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SOME TOPICS IN STATISTICAL MECHANICS 

(Molecular distribution functions, cluster expansions, etc.) 

by 

B. R. A. Nijboer 

I. INTRODUCTION 

Literature 

These lectures will deal mainly with the pair distribution function, its 
definition, its propert ies , and its cluster expansion. The principal aim of 
these lectures is to give enough basic information to enable anyone who is 
interested in specific applications to find his way in the recent l i terature . 

Let me first mention some books and review ar t ic les where one may 
find more about the subject we are going to treat: 

1) I. Z. Fisher , Statistical Theory of Liquids, The University of 
Chicago P r e s s (1964); translated from the original Russian edi­
tion, with a supplement by S. A. Rice and P. Gray. 

2) J. deBoer, Molecular Distribution and Equation of State of Gases, 
Reports on P rogres s in Physics J_2, 305 (1949). 

3) E. G. D. Cohen, ed., Fundamental Problems in Statistical 
Mechanics, NUFFIC Summer School, 1961, North Holland Pub­
lishing Company, Amsterdam (1962). 

4) G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical 
Mechanics, Proc . Summer Seminar, Boulder, I960, Am. Math. 
S o c , Providence (1963). 

5) G. E. Uhlenbeck, Statistical Physics 3, Brandeis Summer Insti­
tute, 1962, W. A. Benjamin, Inc., New York, (1963). 

6) J . de Boer and G. E. Uhlenbeck, ed., Studies in Statistical 
Mechanics, Vols. I and II, North Holland Publishing Company, 
Amsterdam (1962 and 1964). 

7) H. L. Fr i sch and J. L. Lebowitz, ed., The Equilibrium Theory of 
Classical Fluids, a lecture note and reprint volume, W. A. Ben­
jamin, Inc., New York (1964). 

Further , of course, one may find some of our topics treated in the usual text­
books on statist ical mechanics, among which I wish to mention in particular: 



T. L. Hill, Statistical Mechanics, McGraw-Hill, New York (1956). 

J. E. Mayer and M. G. Mayer, Statistical Mechanics, John Wiley and 
Sons, Inc., New York (1940). 

A. Miinster, Statistische Thermodynamik, Springer, Berlin (1956). 

B. The Paper of F. Zernike and J. Pr ins 

Before starting with a more systematic treatment, I would like to give 
a short review of the classical paper by F. Zernike and J. Pr ins , Z. Physik 
41, 184 (1927). The reasons for doing this are: a) In this paper, the radial 
distribution function g(r) was first introduced in theoretical physics, and its 
importance for the theory of scattering was clearly realized, b) The g(r)-
function was calculated here for a particularly simple system, viz., the one-
dimensional hard-sphere system. This system is one of the very few for 
which g(r) can at all be computed rigorously. 

Let us consider the scattering of X rays by a monatomic fluid. The 
wave vector of the incoming plane wave is kg, and we want to calculate the 
differential cross section for scattering in a direction given by the outgoing 
wave vector k (k = ko). Let the scattering annplitude for one atom be a. For 
the differential cross section per particle, we have 

a(e) N" 11 i/c • (r i ) 
( l - l ) 

Here, /c = ko - k, N is the number of particles, and r'n and r"m are the posi­
tions of particles n and m respectively. The exponent KT • (r"n - r"m) gives the 
phase difference between the waves scattered at n and m. (See sketch below.) 

The expression (l- l) must be averaged over the configurations of the 
scattering system. One obtains, when taking the te rms with n = m apart . 

a (e) = a'{l + p/{g(?) - 1} ei-f-^d?}. 
(1-2) 



T h i s i s the f a m o u s f o r m u l a of Z e r n i k e and P r i n s . H e r e P = N / V i s the a v ­
e r a g e d e n s i t y (number of p a r t i c l e s p e r uni t v o l u m e ) , and g(r)^is the p a i r d i s ­
t r i b u t i o n funct ion, s o m e w h a t l o o s e l y def ined a s fo l lows: p g ( r ) i s the a v e r a g e 
d e n s i t y at pos i t i on r" if we know tha t a p a r t i c l e i s a t the o r i g in , o r a l s o 
glr*!- r 2 ) ( d r i / v ) ( d 7 2 / v ) i s the p r o b a b i l i t y of f inding p a r t i c l e 1 in v o l u m e e l e ­
m e n t d ? ! and a t the s a m e t i m e p a r t i c l e 2 in d^z- The p a i r d i s t r i b u t i o n func­
t ion m e a s u r e s the c o r r e l a t i o n b e t w e e n p a i r s of p a r t i c l e s . F o r a s y s t e m of 
n o n i n t e r a c t i n g p a r t i c l e s ( idea l ga s ) , g(r') = 1 for a l l ? , whi le ^n any fluid, 
g(r') a p p r o a c h e s ' 1 for l a r g e 7 . We have s u b t r a c t e d 1 f r o m g( r ) in the above 
f o r m u l a . T h i s t e r m a m o u n t s to 8M^pd(^), which is d i f fe ren t f r o m z e r o only 
for e = 0. It r e p r e s e n t s the u n s c a t t e r e d b e a m . The i n t e g r a l m a y now be 
ex tended o v e r an inf ini te v o l u m e . If we e x p r e s s a ( e ) o r a {ic) in u n i t s a 
(d i f fe ren t ia l c r o s s s e c t i o n of one i s o l a t e d p a r t i c l e ) , we s ee tha t a(/c) - 1 i s 
the F o u r i e r t r a n s f o r m of p{g(r) - l ) . C o n v e r s e l y , g ( r ) m a y , in p r i n c i p l e , be 
ob ta ined f r o m the X - r a y d i f f rac t ion p a t t e r n . 

I would l ike to add a few r e m a r k s h e r e . In the d e r i v a t i o n , we s u p ­
posed the p a r t i c l e s fixed and then a v e r a g e d ove r t h e i r con f igu ra t ion wi th 
the t r u e s t a t i s t i c a l d i s t r i b u t i o n funct ion. Nowadays one c a l l s it the s t a t i c 
a p p r o x i m a t i o n . It i s va l id for X r a y s , b e c a u s e in th i s c a s e the e n e r g y t r a n s -
fer can be n e g l e c t e d c o m p a r e d to the p r i m a r y e n e r g y . F o r s l o w - n e u t r o n 
s c a t t e r i n g , the p r i m a r y e n e r g y and the e n e r g y t r a n s f e r a r e of the s a m e 
o r d e r . In t h i s c a s e , the s t a t i c a p p r o x i m a t i o n i s no longer va l id . One can 
then i n v e s t i g a t e the m o r e d e t a i l e d s c a t t e r i n g function S(K, m), w h e r e Im i s 
the e n e r g y t r a n s f e r . One can show tha t for 

>+0Q 

S(/C, CD) dtD, 

the s t a t i c a p p r o x i m a t i o n s t i l l h o l d s . H o w e v e r , t h i s i n t e g r a l i s no l onge r ex ­
ac t ly equa l to the d i f f e r e n t i a l c r o s s s e c t i o n aid), b e c a u s e for fixed 9, K. i s no 
longer a c o n s t a n t v e c t o r . 

F o r the c a s e of s c a t t e r i n g of l ight , w h e r e the wave leng th X i s m u c h 
l a r g e r than the d i s t a n c e ove r which g ( r ) - 1 i_s ^ l i f e r e n t f r o m z e r o (except 
n e a r c r i t i c a l cond i t i ons ) , one m a y r e p l a c e e'^>^-'^ by 1. One t h e n h a s 

fjljl = l+p/{g(?)-l}d7. (1-3) 

We wi l l show l a t e r tha t the r i g h t - h a n d s ide is 

l V p / ( g ( ? ) - l } d 7 . % ^ ^ ^ ^ = l ^ T ( f ) ^ ^ X T . (1-4) 



This is the formula of Ornstein and Zernike. It expresses our integral in 
te rms of the density fluctuations (fi is an a rb i t ra ry volume, containing 
many particles, but small compared to the total volume); Xx is the relative 
isothermal compressibility of the system, i.e., the isothermal compress i ­
bility divided by that of an ideal gas of the same density. 

Let us now calculate g(x) for a one-dimensional system of hard 
spheres or rather hard rods. Suppose we have a line of length L upon which 
are N rods, each of length a. The position of each rod is represented by its 
center. We now ask for the probability of finding another center at a distance 
between x and x + dx from a given center. This is clearly pg(x) dx. One has 
g(-x) = g(x) and g(x) = 0 for x < a. For a < x < 2a, there is, at most, 
one particle on the length x; for ka < x < (k+ l) a, the number of part icles 
on the line of length x (starting from a given particle) is at most k. One may 
now put 

g(^) = Z gk(x). (1-5) 
k 

where Pgi<;(x) dx is the probability that the kth atom (numbered from the given 
particle at x = O) may be found between x and x + dx. For any x, the num­
ber of terms in the sum (1-5) is finite. It is now convenient to look only at 
the intervals between particles. If we subtract the volume of the atoms, we 
have a line of Length L - Na, and hereupon N points distributed at random, 
as shown below: 

L - N a 

Our problem is now analogous to that of the distribution of free paths in gas 
theory. The probability of finding an interval of length x' is (Clausius) 

T-"''/^ (1-6) 

when L -* CO and N -> co in such a way that ( L - Na)/N = £ . We see that £ is 
the mean length of the interval. 

Let us recall briefly the derivation of (1-6). The probability of find­
ing a given point on a segment of length x' is X ' / ( L - Na). The probability 
that this segment will contain no particles is 



N / „wN 

V L - N a j V Ni 

This expression approaches e ' ^ ' A when N -oo. The probability then of 
finding an interval with length between x' and x' + dx' is e'^'/'' • d x ' / i . 

F r o m (1-6), it follows that the probability that the sum of two ad­
jacent intervals l ies between x' and x' + dx' is 

dx' r ' ] . e - x " A i e - ( x ' - x " ) / i d x " = | e - ' A d x ' . 
-'o 

Similarly, one finds for the probability that the total length of k adjacent 
intervals is between x' and x' + dx' 

pgk(x') dx' = 
X , k - i 

iH"^- 1)! 

One verifies that 

-^'Adx'. (1-7) 

k=i 

as it should. 

Z , , , dx' 

pgk(x') dx' = - 7 - . 

Returning now to the problem of the rods, we have at each point to 
add in a length a. For gk, one has x = x' + ka, and therefore 

^„ (x) - (^- '^^)^" ' g - ( x - k a ) / i , for x > ka; 

= 0 f°^ X < ka; 

so that finally 

pg(x) = i { e - ( x - a ) A . ^ e-(x-2a)/ i . k _ ! | | ! e-(x-3a)A . . , } . (1-8) 

where the sum should be continued as long as the exponents are negative. 
This is the resul t of Zernike and P r in s . In their paper,they plotted g(x) as 
a function of x for the cases I = 0.5, 0.25, and 0.1 ( l / p = £ + a is taken to 
be 1). The smal ler I, the higher-peaked is g(x) and the farther do the cor­
relat ions extend. 
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The e x p r e s s i o n (l-8) for pg(x) i s a r a t h e r c o m p l i c a t e d one . Howeve . 
it i s wor th ment ion ing that i t s L a p l a c e t r a n s f o r m i s v e r y s i m p l e . We have , 
n a m e l y , 

Pgk(s) = / e - s x p g k ( x ) d x = - ( f j T ^ . (1-9 ' 

' 0 

and t h e r e f o r e 

r"' T ^ - s k a 1 
Pg(s ) - / e - ^ ^ pg(x) dx = ^ (^^TYjk = ( J Y T T Y T i T T - 1 - ( ^ - ^ ° ' 

F r o m 

l im pg(s) 
s-*-o 

it fol lows tha t 

l im pg(x) = 
X-»oo 

iiH+i 

1 

i +£ 

F u r t h e r m o r e , in (l- 10) it is e a s y to go to the l imi t i -» 0, which is not so 
s imple in g(x). We have 

'• Pg(s) 
X-»o " e s a - 1' 

f rom which it follows that 

oo 

l i ^ pg(x) = Z 6(x-ka). ( l - l l ) 
k=i 

One s e e s h e r e the t r a n s i t i o n f rom gas to l iquid to c r y s t a l . H o w e v e r , t h i s 
t r a n s i t i o n is pe r fec t ly cont inuous ; in one d imens ion , t h e r e a r e no p h a s e , 
t r a n s i t i o n s . T h i s unconven t iona l me thod to d e r i v e the e x p r e s s i o n for g(x) 
cannot , unfor tuna te ly , be appl ied to o the r s y s t e m s o r to the t h r e e - d i m e n s i o n a l 
h a r d - s p h e r e s y s t e m . We sha l l now t u r n to a m o r e s y s t e m a t i c t r e a t m e n t in 
t e r m s of s t a t i s t i c a l m e c h a n i c s of the p a i r d i s t r i b u t i o n function. We shal l s ee 
tha t s t a r t i n g f rom the g e n e r a l def ini t ion it i s a l s o p o s s i b l e to d e r i v e the 
above r e s u l t ( l -8) for the o n e - d i m e n s i o n a l h a r d - s p h e r e s y s t e m , though the 
d e r i v a t i o n i s r a t h e r m o r e c o m p l i c a t e d . 
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II. ENSEMBLES AND THE LIOUVILLE THEOREM 

Let us start recalling some basic concepts of statist ical mechan­
ics . The aim of statistical mechanics is to establish relations between 
the observable macroscopic proper t ies of large systems (containing a 
very large number of atoms) and the propert ies of the par t ic les and their 
interactions as given by atomic theory. Statistical mechanics t r i e s to 
provide an atomistic foundation of the phenomenological laws established 
in thermodynamics and other fields of macroscopic physics. 

A macroscopic quantity of matter contains of the order of 10 
atoms. Suppose we may consider the system classically; then from p r e ­
cise positions and momenta of all par t ic les at time t = 0, one could, in 
principle, calculate the exact state of the system at some other time t. 
We do not have this detailed information, and the computations would be 
hopelessly complicated. Fur ther , we are not really interested in the po­
sition and velocity of every atom at some later t ime. We are only inter­
ested in a relatively small number of so-called macroscopic quantities 
which can be measured. Consider, for example, the p ressu re of a gas. 
The forces exerted by the molecules on the walls of the container vary 
extremely rapidly. We only want to know some average of this force over 
small space and time regions. It is evident that for this purpose, s ta t is ­
tical arguments have to be invoked. 

We will mainly res t r ic t ourselves to classical statistical mechan­
ics and to systems in equilibrium. Let us suppose we have a system con­
sisting of a very large number N of identical molecules, the motions of 
which can be described by a Hamiltonian, 

H y Z L + v(?i, 2̂ ?N)- ^^-^^ 
4-" 2m 

The state of the system is then completely specified by a point in the 
6N-dimensional phase space, the so-called T-space (Ehrenfest). The 
representative point descr ibes a path in T-space according to the Hamil­
tonian equations of motion, 

S H 

and I (11-̂ ) 

an 
P k - - a q i , -
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T h i s path is of e x t r e m e c o m p l e x i t y ; if two m o l e c u l e s co l l i de , the r e p r e ­
sen ta t ive point j u m p s f r o m one r e g i o n to a n o t h e r . Since in e a c h point the 
d i r e c t i o n of the tangent to the path i s un ique ly g iven by the above e q u a t i o n s 
of mot ion , a path can n e v e r c r o s s i t se l f . If the s y s t e m i s i s o l a t e d , the 
to ta l ene rgy is c o n s e r v e d and the p h a s e point nnoves on the s o - c a l l e d 
ene rgy s u r f a c e . 

In s t a t i s t i c a l m e c h a n i c s , one now c o n s i d e r s not one s y s t e m , but one 
i m a g i n e s a ve ry l a r g e n u m b e r of i den t i ca l s y s t e m s , wh ich i s c a l l e d an 
e n s e m b l e , The s y s t e m s a r e supposed to differ only in p h a s e ; i . e . , t he i n i ­
t i a l condi t ions a r e d i f ferent . We have , t h e r e f o r e , a c loud of p h a s e p o i n t s 
moving in F - s p a c e . Two o r b i t s n e v e r c r o s s . An e n s e m b l e i s c h a r a c t e r i z e d 
by a dens i ty p(q , . . . , p ^ j , t ) , which we suppose to be n o r m a l i z e d ; i . e . . 

/ p (9„ 3N 
, t ) dq^ ,.. dp^j^ = 1. (II-3) 

The function p cannot be an a r b i t r a r y function subjec t to (11-3). F i r s t we 
have p a 0, and fu r the r 

o t j^ dqj^ j^ dP^ 

T h i s i s the equat ion of cont inui ty , e x p r e s s i n g the fact that the i n c r e a s e of 
the n u m b e r of p h a s e poin ts in an a r b i t r a r y vo lume e l e m e n t of p h a s e s p a c e 
dur ing some t i m e i n t e r v a l mus t be equal to the n u m b e r of p h a s e p o i n t s 
e n t e r i n g th rough i t s boundary dur ing that t i m e . If we i n t e g r a t e (II-4) o v e r 
al l phase space , we find that 

Jp^'i, P 3 N ' ' ) < i q ' ••• <iP3N 

r e m a i n s cons tan t in t i m e , so that if (II-3) ho lds at any m o m e n t , p wi l l 
s tay n o r m a l i z e d in the c o u r s e of t i m e . Equa t ion (II-4) may be w r i t t e n 

5p Y . Sp r-, . ap V- /Sqk SPi^\ 
- ^ I ^ . ^ , ^ I P k ^ ^ ^ Z p ( , - . ^ ) ^ 0 . (II-5) 

The l a s t t e r m c a n c e l s b e c a u s e of the equa t i ons of mo t ion ( I I -2 ) . We find, 
t h e r e f o r e , 

.££ _ ^p ^ V • ^p V • ^p Sp 



13 

where 

V / ^P S H Sp S H \ 

is the Poisson-bracket . This is the equation of Liouville. It states that p 
is conserved as we move with the phase points, or also that the phase 
points move as an incompressible fluid. It is a consequence of the equa­
tions of motion. One might also say that the extension in phase space is 
conserved; i .e. , if we consider a cloud of given volume in T-space and 
follow its motion, then the volume occupied at some later time is equal in 
size, though generally very different in shape. Liouville is sometimes 
expressed as 

^(•^l' •••'PaN) _ J (11-7) 
S[qi(0) P3N(0) ] 

which is equivalent to the above formulation. 

The fundamental assumption of statistical mechanics is that the 
macroscopic quantities as measured on a system correspond to the en­
semble average taken over a suitably chosen ensemble, 

<f(qi, • . . . P 3 N ) > = J^P <î i ••• '̂ PaN- '^^'^^ 

For a system in equilibrium, where the macroscopic propert ies do not 
depend on t ime, p may not explicitly depend on time; i.e., the equilibrium 
ensemble should be stationary. 

According to Liouville, p remains constant when moving with the 
phase points, so that for a stationary ensemble p(qj, ..., P^^) should be 
chosen at some initial time in such a way that it is the same all along the 
orbit This means that for a stationary ensemble, p may depend on the 
integrals of motion only. In pract ice, one only considers the case that p 
depends exclusively on the value of the total energy E. Other integrals of 
motion are usually not known. The best-known stationary ensembles are : 

(a) Microcanonical ensemble (Boltzmann). Here, p is taken to 
be a constant between two neighboring energy surfaces and zero everywhere 
else. If the difference in energy between the surfaces approaches zero, 
one has a so-called surface ensemble with surface density oc|grad E | . 
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(b) Canonical ensemble (Gibbs). Here , 

H(Pi ^SN ' 

p = constant • e ^'^ 

(c) Grandcanonical ensemble (also introduced by Gibbs). We will 
come back to this later. 

For most practical purposes, the various ensembles mentioned 
above lead to equivalent results . Usually the microcanonical ensemble is 
considered to represent an isolated system for which the energy is con­
served, and the canonical ensemble is considered to represent a system m 
contact with a large heat bath. Here the temperature is fixed and the 
energy fluctuates. The canonical ensemble is often much more convenient 
than the microcanonical, because in the latter the integration over phase 
space necessary to coimpute averages has to be res t r ic ted to the energy 
surface, which may be rather awkward. Darwin and Fowler consider the 
canonical ensemble as just a mathematical device to make the calculation 
of averages easier . In the canonical ensemble, the actual spread in 
energy is extremely small for large systems; that is , the overwhelming 
number of systems has an energy very close to the mean value. This is 
because for a large system the volume of phase space between two suc­
cessive energy shells increases with a large power of E. Let us take as 
an example the average energy. In the canonical ensennble, it can be ex­
pressed as 

<E> = I j"n(E) e '^ / '^ '^dEJ • j"En(E) e ' ^ / ^ ' ^dE , (II-9) 

where fi(E) dE is the volume of phase space between the energy shells 
E and E + dE. For an ideal gas, one easily verifies that n(E) a E ( ^ ^ ^ ) N - I 
Now the function E'^e"^/^ '^ has for large V a very sharp maximum for 
E = vkT. If we put E = vkTx, then 

E^e-̂ A^ = (^f (xe'-)A 

Now xe'-'^ = 1 for X = 1, and xe '"^ < 1 for all other positive x. The 
large power of xe'"'*^ makes the maximum extremely sharp. In this sense, 
the energy of the system becomes a unique function of its t empera tu re . 

In the following, we will mainly use the canonical ensemble. Let us 
conclude this chapter with a few remarks . 
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Remarks 

1. We derivedthe equation of Liouville for the change with time of the 
density of phase points in T-space. This equation in itself has nothing to 
do with statist ical mechanics; it belongs to mechanics proper . It is per­
fectly revers ib le in t ime, i .e. , invariant for the transformation t — -t. One 
of the fundamental problems in statist ical mechanics is how to a r r ive from 
Liouville to an i r revers ib le equation (like the Boltzmann equation or the 
master equation) from which the well-known i r revers ib le behavior of actual 
macroscopic physical systems can be explained. For a very clear dis­
cussion of the justification of ensemble theory in equilibrium statist ical 
mechanics and for an explanation of the apparently paradoxical i r r e v e r s ­
ible behavior of macroscopic systems, I refer to Uhlenbeck and Ford, 
(Ref. 4) mentioned in Section I-A. 

2. For any functionin phase space f(qi, ..., pj^j, t) we have 

d| , y / ^ ^ . . ^ M V — = —+(f H) = Lf, (11-10) 
dt ^ \hq^ apj, aPk sqky St at 

where 

L 
t ^ t Upk ^9k ^^k ^Pk'' 

is called the Liouville operator . The equation (II-10) can be integrated 
formally giving 

f(t) = eLtf(O), (11-11) 

for then 

4^ = L e " f(0) = Lf(t). 
at 
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III. MOLECULAR DISTRIBUTION FUNCTIONS 

Le t us c o n s i d e r an a r b i t r a r y s t a t i o n a r y e n s e m b l e . We have i n t r o ­
duced the dens i ty p^{r'^, . . . , p-^), so that pdT i s the p r o b a b i l i t y of f inding 
a s y s t e m of the e n s e m b l e in the vo lume e l e m e n t dT of P - s p a c e . A c c o r d ­
ing to the fundamenta l a s s u m p t i o n of s t a t i s t i c a l m e c h a n i c s , t h i s a l s o 
r e p r e s e n t s the p robab i l i t y of finding, du r ing the t i m e of o b s e r v a t i o n , our 
p h y s i c a l s y s t e m in the e l e m e n t d7j ... d^jj^ of T - s p a c e ,J^.e. , the p r o b a ­
bi l i ty of finding p a r t i c l e 1 in d'^jd'pj, p a r t i c l e 2 in dT^d'p^, e t c . , in M ' S p a c e 
(f . i -space i s the s i x - d i m e n s i o n a l p h a s e space of one m o l e c u l e ) . F r o m p-^ 
we can , in p r i n c i p l e , c a l cu l a t e al l m a c r o s c o p i c p r o p e r t i e s of o u r s y s t e m ; 
P N s t i l l c h a r a c t e r i z e s the s y s t e m in g r e a t d e t a i l . U s u a l l y , h o w e v e r , one 
d o e s not need such de ta i l ed i n fo rma t ion ; one u s u a l l y w a n t s to a v e r a g e only 
q u a n t i t i e s which a r e a s u m of o n e - p a r t i c l e or t w o - p a r t i c l e func t i ons . 
T h e s e a v e r a g e s can be c a l c u l a t e d a s soon as one knows r e d u c e d d i s t r i ­
but ion func t ions , e .g . , o n e - p a r t i c l e or t w o - p a r t i c l e d i s t r i b u t i o n func t i ons . 
We sha l l soon m e e t with e x a m p l e s . 

We then i n t r o d u c e r e d u c e d d i s t r i b u t i o n func t ions , e .g . . 

p^{Ti.?^.T^,p^,p^.p^) jpNi^,. P N ) dr'^ ... d^j^d^^ .. . dpj.^, (m-1) 

which i s the p robab i l i ty of finding t h r e e n u m b e r e d m o l e c u l e s 1, 2, and 3 
at drjdjSj, d?^d'p^, and df^dp'j, r e s p e c t i v e l y , not r e g a r d i n g w h e r e the o t h e r 
m o l e c u l e s a r e . If al l m o l e c u l e s a r e of one kind, it i s usefu l to i n t r o d u c e , 
i n s t e a d of the spec i f ic d i s t r i b u t i o n funct ions c o n s i d e r e d a b o v e , the s o -
ca l l ed ^£eri£iu£ d i s t r i b u t i o n funct ions P , w h e r e the m o l e c u l e s a r e left 
unspec i f i ed . T h e s e a r e 

a n d 

P N ( I 

i ( f ' i . 

P N ) = NI P^Ci P N ) . 

N: 
••• P m ) 

(m-2) 

w h e r e N.'/(N - m)! i s the n u m b e r of ways in which m m o l e c u l e s can be 
c h o s e n out of N. In p a r t i c u l a r . 

a n d 

p , ( ? , , ? ^ , P , , p ; ) = N ( N - i ) p,{r^,T^.p^.p^) 

P i ( ? ; , P i ) = N P j ( r , , i j ; ) . 

( I I I -3) 
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Finally, by integrating over momenta, one obtains either specific 
or generic distribution functions in configuration space only. For the 
generic functions in par t icular , we have 

nj^(?;, . . . ,?N) = / ^ N ^ ^ i PN) ^ 1 • • • • ' ^ P N = 

and 

'^^ / p N ( ^ r • • • •PN) ' iP i • • • • ' ^ P N ' 

n (? . , ? • ) = fp (î  , . . . , ? ) dp, m^ 1' ' m ' J m^ i ' ' ' ^ m ' ^i d p . 

N 

( N - m) 
—:, fpm(^l Pm) 'IPl ••• 'IPr 
m •' 

(III-4) 

F r o m these definitions, it will be obvious that the normalization of these 
functions is given by 

N! 
^J^.-''''m (N-m) j ' n ^ ( r ; . 

Also, it is easy to verify that, e.g., 

"z(^i-^z) =W^ / - 3 (? i . ?z . ^3 )d r3 = j ^ ^ ^ / - I 

and 

^^^^^ = iTTi h^^'^^^^^^ - T ^ . / "^ ' " '^•••• ^ 

(III-5) 

.j^dr^ ..., drj^. (III-6) 

N ' III-7 

or generally 

-T^ / '^m+i^^l ?m+i)d?m+i-
(III-8) 



n2(?i,r"2) is called the two-particle (or sometimes pair-) distribution 
function; nj(?'j) is the number density. All this was perfectly general. Let 
us now specialize to a canonical ensemble. Here we have 

P^ir, PN) = ( h ^ ^ N : Z ^ ) - ' e - ' ' " ( ^ . P N ' . ( U I - 9 ) 

Here H is the Hamiltonian, j3 = l /kT, and the factor in front with 

^N - ^ / e - ^ " d 7 , . . . d p ^ (III-IO) 

is a normalizing factor. [The insertion of the factors N! and h^ (h is 
Planck's constant) will be explained below.] The integration over momenta 
gives (27TmkT)^'^/^ so that [cf. (III-4) and (II-I)] 

- N ( ^ I ? N ) ~ e - ^ ^ ( ^ i ^N) ( i n - H ) 

with 

^.-il^f-x^l^ I'-'-"'' "»'-V.-̂ ^ 
(III-12) 

As a consequence, we have [cf. (III-6) and (III-7)] 

^(^i'^2' '^3) = (N-3) 'Q J'' d-74 .... d?^ , (m-13) 

"a(^i.^2) = ( N - 2 ) : Q ^ / ^ " ^ ^ d ^ 3 •••'I'^N. (ni-14) 

and 

i^\ - 1 C - ev ^ _ 

Z ^ IS called the partition function, Qj^ the configurational partition func­
tion. These are important concepts, because from them, all thermodynamic 
properties can be calculated via the (Helmholtz) free energy F = U - TS, 
which is given by 
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-kT log Zj^ = -(3/2) NkT log ( " f ) -kT log Q N - (111-16) 

This correspondence between statist ical and thermodynamic quantities can 
be shown to hold in various ways; one of them we will mention further on. 
The factors ĥ ^̂  and N! in the definition (III-10) of Z N have the following 
motivation. As to h^'^, a factor of this dimension is needed to make Z-^ 
dimensionless; by putting in h'^^ (h is Planck 's constant), one obtains the 
same result for F as the classical limit of quantum stat is t ics . NI is 
inserted so that the free energy becomes an extensive quantity (or, in other 
words, to make the entropy additive or to avoid the Gibbs paradox). 

As a matter of fact, this correspondence with thermodynamics (or 
with macroscopic theory) has only sense in the so-called thermod-ynamic 
limit; i . e . ,whereN -» w, V(volume) -• =» in such away that p = N/V remains 
constant. Actually, one can prove, under certain res t r ic t ions for the inter­
actions, that in this limit 

1? l°g ^N 

exists and is independent of N. It then represents - l /kT t imes the free 
energy f per par t ic le ; i .e. , in this linnit, 

Nf 
e"kT = 1 fe-p l^ d"?. ... dp,,. (111-17) 

Nlh^N 
/ e d"?̂  ... dpj^. 

The first proof of this statement was given by L. Van Hove (Physica, 1948; 
in this paper, it was also shown that p = -{cii/bv).^ is a nonincreasing 
function of the volume per part icle v). Later it was realized that the proof 
contained certain defects. Recent considerations on this topic are due, 
among others , to D. Ruelle (1963) (cf., e.g., Ref. 7). 

In the definition of the distribution functions, one usually either ex­
plicitly or implicitly considers the thermodynamic limit. In that limit, one 
has 

,_ ^ . _ 2 ,-* ;-^ (111-18) 
n ^ ( r j , r p P ^'^^z' ""i'' 

withg(oo) = 1. [Compare, e.g., (III-5).] Noticethat Hill in his book defines 
g by n = p^g for finite N. In his case , then, g(co) = 1 + 0 ( 1 / N ) . ] 
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IV. SOME P R O P E R T I E S OF THE PAIR DISTRIBUTION F U N C T I O N 

In the p r e v i o u s c h a p t e r we have g iven the def in i t ion (with the c a n o n ­
ica l e n s e m b l e ) of the m o l e c u l a r d i s t r i b u t i o n func t ions . We wil l now d e r i v e 
s o m e i m p o r t a n t p r o p e r t i e s of, in p a r t i c u l a r , the p a i r d i s t r i b u t i o n njfr,, r2) 
[or of g( f ) ] . The Hami l t on i an , which in g e n e r a l was g iven by [cf. ( I I -1)] 

" = Z IZ'^^^-^^ ^N). 

r e d u c e s , in the i m p o r t a n t c a s e tha t the po ten t i a l e n e r g y is a s u m of p a i r 
i n t e r a c t i o n s , to 

i i<k 

A. The Equa t ions of Sta te 

The m a c r o s c o p i c e n e r g y of our s y s t e m s ( i . e . , the a v e r a g e i n t e r n a l 
ene rgy ) i s for the Hami l ton ian (IV-1) given by 

U = (Nlh^^N)"' K ' ^ " ( Z | ^ + Z *(rik)) d?,...dpj,^. (IV-2) 
-̂  i i<k ' 

P e r f o r m i n g the i n t e g r a t i o n s over a l l m o m e n t a and o v e r a l l but two c o o r d i ­
n a t e s r i and r2, we find, with (III-14), 

U = (3 /2) NkT + (1/2) r n2(Ti,T2) 0 (? i2 ) d7,dT2. ( IV-3) 
*/ V 

Th i s i s c a l l e d the c a l o r i c equat ion of s t a t e ; it e x p r e s s e s U a s a funct ion of 
v o l u m e V and t e m p e r a t u r e T. In the t h e r m o d y n a m i c l i m i t , we can a l s o w r i t e 

^ "" N" = (^A) kT + (1/2) p Jg{7,,) 0(Ti,) dT,2, (IV-4) 

or for an i s o t r o p i c s y s t e m , 

^ 0 0 

u = (3 /2 ) kT + 27TP / g( r ) 0 ( r ) r ' d r . ( IV-5) 
•^ 0 
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Further, one can make use of the so-called virial theorem. This states 
that for a system in equilibrium, the virial of the external and internal 
forces exerted on the system is equal to minus twice the average kinetic 
energy of the system. The virial is defined by 

( Z ^i • Fi) = -3pV - / X ^ik • -=^ ) . 
\ i / ^i<k S^ik/ 

(IV-6) 

where Fi is the sum of external and internal forces on particle i, V is the 
volume, and p is the pressure. We have, therefore, 

pv = (zA) Z ^ - ( l A ) ( Z ^ i k - ^ > . (̂ -̂̂ ) 
i ^"^ \ i<k s^ ik / 

or 

pV = NkT- (l/3)(N:h3%j,^)"' | e - P " Z ^ik " " ^ di^.-.dpN-
J i<k ik 

Performing the integrations as far as possible, we find 

pV = NkT - (l/6) I n2(Ti,?2) ?i2 • T::r- d^jd?;. (IV-8) 
Jy 0̂ 12 

This is the thermal equation of state; it expresses p as a function of 
volume and temperature. In the thermodynamic limit, we can write 

pv = kT- (l/6)p /g(7i2)7i2- - ^ dri2, (IV-9) 
J or ,2 

where v = V / N is the volume per particle. 

If the system is isotropic, then, because 

- S0 _ d0 

we have 

27T / , , d0 p ^ , kT - ^ ^ o I e ( r ) -T - r ^ d r . ( IV-10) 
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The i m p o r t a n t equa t ions (IV-3) and (IV-8) can a l t e r n a t i v e l y be d e r i v e d 
f rom the e x p r e s s i o n (III-16) for the f r ee e n e r g y , when we m a k e u s e of the 
we l l -known t h e r m o d y n a m i c r e l a t i o n s 

SF\ ,„, „ ^ (MM = ̂ im F/TA 

Indeed, 

a i o g Z ] \ I 1 / O T _ r - » — 

U = i - ^ = H e - P H d r , . . . d p N , ( IV-12) 
S/3 N'.h^Nzj^ J 

which is iden t ica l with (IV-2) above . 

The a l t e r n a t i v e d e r i v a t i o n of the t h e r m a l equa t ion of s t a t e i s a l i t t l e 
m o r e difficult. We s t a r t f rom 

Slog Z N ^ log Q N 

p = '̂ ^ -^r^ -- ̂ '^ — ^ (̂ -̂ ™-i^)-

The difficulty now is that O N depends on vo lume th rough the l i m i t s of i n t e ­
g r a t i o n . Suppose the volume is a cube of edge L. Then we put (as w a s f i r s t 
done by H. S. Green) 7'- = ( 1 / L ) T; . Then, 

QN =1T: /e-/3v(7, ^,,) a7,...a7^ = ̂  Je-m^. %) dri...dr-'^. 

a n d 

kT 3 0 N 1(T 1 9 Q N IcT 
Q N av - O N 3 L ' S L - Of^jL^i 

/ ( 3 N L - - . . , , 3 N | 1 ) , - , V , 7 , . . . , ^ ^ . 

F u r t h e r , 

av(L7;,....LT^) _ y -. d0(i^ik) 
i-i '^ik 

^ L i^k "^ S?>j, 

T h e r e f o r e , 

7 v i< i( ' sTik y L 
.drN 
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pV = N k T - ( l / 3 ) ( Z T , , . ^ ) , (IV.13) 
\ i < k ^^ik / 

which is identical to (rV-7). 

The fact that the identification 

F = -kT log Z N . 

via the usual thermodynamic relations, leads to a form of the equations of 
state, which was also found directly, can to some extent be considered as 
a proof of this relation (cf., for the above derivations, Ref. 2). 

B. The Function g(?) as the Functional Derivative of the Free Energy 

The equations of state discussed above a re widely known. We will 
now derive an important property of g(r) which is much less known 
(cf. Refs. 1 and 7). We will show that, but for a factor ( l / 2 ) p , g(r) is the 
functional derivative with respect to the pair potential of the free energy per 
part icle. 

According to our definitions, we have [cf. (Ill-12) and (III-14)J 

O N = ^ / e - P V ( r : . 7 N ) d r , . . d r N , 

and 

n, r,, r ,) = N ( N - l ) (fe-^''dT,...d?^) ' J e - P V ( T „ . . . , % ) d r 3 . . . d r N . 

Let 

V ( ' ? I , . . . , 7 N ) = Z *ij(^ij) 

and let the two-part icle potential 0 vary by a small amount 60 . Then 

6 Q N = - | f l 6 0 i ^ e - P ^ * i w r , . . . d r N . 

J i<j 
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As all terms in the sum are equal, one has 

^ Q N = - / 5 ^ ^ ' /60,2dr-,dr-'2 / e - ' ^^* iJdr -3 . . .d rN 

= -(/3/2) Q N /6 0,2n2(T,, Tj) dr,dr2. 

and 

6 log Q N = -(/SA) j 60i2n2(?i,T2) d^id^i = -(/3/2)p^V \ b<t>G) g(^) dr 

Now if f(v,T) is the free energy per particle, we have 

Nf = -kT log Z N = -kT log Q N -(3/2) NkT log iZLUlllL^ 

h^ 

and 

N6f = -kT 6 log ON-

Hence, 

1/2) p jt 6f = ( l /2)p l 6 0 ( r ) g(r) d r . (IV-14) 

We shall see in the following that for f a cluster expansion can be given which 
is an expansion in powers of the density. The theorem (IV-14) will enable us 
to deduce from this expansion a similar expansion for the pair distribution 
g(r). 

Remark 

Suppose that the variation of the total potential energy can be 
written as a sum of three-particle interactions, 

* ^ ( ^ " ^ ^ ^ N ) = Z 6*ijk ( r i ,? j ,Tk) . (lV-15) 
K j<k 
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We then obtain in a similar way as above 

ao^ . - | .^N(N-i)(N-z) |50,„dr.dr2dr3 je-^^^^ ^NW-;...dr^ 

= -(13/6) QN J60i23n3(Ti,72.^3) d?idr2dr3, 

and 

6 log Q N = -(|3/6) J60i23n3(T,, r2, r3) dridr2dr3. 

Or, if we define, in the thermodynamic limit, 

" 3 ( ^ 1 . r 2 . ^ 3 ) = P ^ g 3 ( r i 2 . l^ij), 

then, 

6f = ( l / 6 ) p ' j60i23(Pi.P2)g3(Pi.P2) dpldpj; (IV-16) 

i.e., also the three-par t ic le , etc., distribution functions can in a 
certain sense be considered as functional derivatives of the free 
energy per particle. 

C. A System of Integral Equations for the Molecular Distribution Functions 

1. The Hierarchy 

In the canonical ensemble, we defined (cf. Ch. Ill) 

, ^ - - , N ( N - l ) . . . ( N - m + l) r - / 3 V ( T , ? N ) < J - ^r^. 
n „ ( r , , r 2 . . . r „ ) = J J T Q - J^ m+i N 

^ (IV-17) 

Let V be a sum of pair potentials: 

V(? , TN) = Z *ij(^ij)-
i<j 



26 

Then, on d i f fe rent ia t ing (IV-17) with r e s p e c t to r , , we obta in 

aT, " ' ( N - m ) : O N j j f , aT, 

N 
-^11 - B VI r , r N ; , -m + , . . . a r j ^ 1 Sn^ 1 I y ''*'U_ „-/3V(r, ^N)^^_ 

?i a*,] ,- - , ra0,,m+i ,- - , , -
= - Z — ^ " m ( r , r „ ) - I _ nm + , ( r , r ^ + , ) d rm + ,. 

j=z aT, J ar, (IV-18) 
We have h e r e a se t of l i nea r i n t e g r o - d i f f e r e n t i a l equa t ions connec t ing two 
s u c c e s s i v e conf igura t iona l d i s t r i b u t i o n funct ions . T h e s e equa t i ons a r e a 
p a r t i c u l a r c a s e of v e r y g e n e r a l r e l a t i o n s , which, a l s o for n o n s t a t i o n a r y 
e n s e m b l e s , connec t the t i m e - d e p e n d e n t d i s t r i b u t i o n funct ions in p h a s e 
s p a c e Pfj, and P m + j . They can be d e r i v e d f rom the Liouvi l l e equa t ion by 
i n t eg ra t i on . (For the i r de r iva t i on , s ee s o m e of the g e n e r a l r e f e r e n c e s . ) 
They a r e often ca l led the B o g o l y u b o v - B o r n - G r e e n - Y v o n - K i r k w o o d (BBGYK) 
h i e r a r c h y . 

In our spec ia l c a s e of the canon ica l e n s e m b l e , we h a v e , for m = 2, 

1 S n 2 ( r i , r 2 ) 

or a l s o 

f — n - n 2 ( r „ r 2 ) - — - _ i i n3( r „ r^, r3) dr 3 ( IV-19) 

1 S log n2( r i , rj) S0,2 /" S0i3 "3(^1.^2.^3 

Sr. 

r 0013 "3( I"!, r 2 , r3) _ 
I —:: ^ ^ — d r j . 

-' S r i n2 ( r i , r 2 ) 
(IV-20) 

This equat ion was p r e s u m a b l y f i r s t d e r i v e d by Yvon. In F i s h e r ' s book, 
(IV-18) is ca l l ed the Bogolyubov equat ion, and it is d i s c u s s e d t h e r e in g r e a t 
de ta i l ; e .g. , it is solved t h e r e by m e a n s of a s e r i e s expans ion in the dens i t y p. 

The equat ion ( lV-20) is i m m e d i a t e l y r e l a t e d to the s o - c a l l e d 
po ten t ia l of m e a n force . The m e a n force on p a r t i c l e 1, when the pos i t i on 
of 2 is given and one a v e r a g e s over the pos i t ions of a l l o the r p a r t i c l e s , i s 
c l e a r l y 

r Sv -pv - -
I - - ^ e d r j . . . d r i ^ ^ ^ 

^ ,- ^ . J 5 r i 1 a logn j ( r i , r2) 
l"i( '-i. '-2) = -r = ^ 1 . (1V-21) 

je-pv<rr3...d-;i, ^ aT. 



27 

This is just the left-hand side of (IV-20). The first term on the right-hand 
side is the direct contribution of particle 2; the second term is the average 
contribution from part icles 3,4,...,N. The potential of mean force 
W2( r i , r2) should obey 

- ^J^I^llli = Fi(Ti,72). (lV-22) 
a^i 

In view of (IV-21), we have 

log n2( r i , r2) = -/3W2( r i , r2) + constant, 

n2(Ti,T2) = constant • e ' ^^^^^"^^) (IV-23) 

More specifically, W2(ri, r^) is usually defined by 

^-/3W2(Ti,T2) _ 1 f e - ^ ^ ' ^ ' ^N)dr3...drj.. (IV-24) 
( N - 2 ) ' . O N J 

If molecules 3,...,N had no interaction with molecules 1 and 2, this would 

reduce to e ' ^ ' ^ The constant in (lV-23) is then seen to be given by 

O N - 2 2 
Q N ^ ' ' 

where z is called the activity (see later chapters). In an analogous way, 
as W2, one can introduce W3, etc., but we will not need them here . 

Kirkwood has discussed an integral equation which is slightly 
different from (IV-20). He introduces 

N N N 

V(ri,T2,...,TN,?) = ? i 0ij(7ij) + I Z V V ' ' ' ^ -"^ 
j=2 j=2 k=j+l 

where particle 1 is coupled to the others by means of a coupling parameter 
I , which may have values from 0 to 1. 

If this potential is introduced into the definition of n2( r i , rj), one 
obtains, by differentiating with respect to ?, 

r ,_ fn3('?i,T2,?3.C) n2(?i,r3,|)~l 
0,, - 0i3(ri3)-^ , , , -p f 
^ -/ L "2(^1.1^2.?) P J 

1 a log n2(7i, r2,g) 

(IV-26) 



2. The Superposition Approximation 

Let us remember that n3( ri, r2, r3)/n2( rj , r2) is proportional to 

the probability of finding a particle at rj once you know that two molecules 

are at ri and ?2. respectively. To find an equation for n2 alone (without 

higher distribution functions), Kirkwood first introduced the assumption that 

"3(^1, r2, T^) ^ n2(ri, r^) n2( r2, ri) (IV-27) 

n2(ri, r2) p' 

or the probability of finding a third particle at r'i, -Â hen given that two par­

ticles are at T,, and 2̂ is put equal to the probability of finding particle 3 at 

r'i when you know that particle 1 is at T^, times the probability of finding par­

ticle 3 at I'y when you know that particle 2 is at r"2. This assumption, which 

obviously is valid at low densities, is called the superposition approximation. 

We shall see later that, at higher densities, it begins to fail. 

In the literature, one often meets with the superposition approxi­

mation in a different, though equivalent, form; e.g., in terms of the 

g-functions (thermodynamic limit), it reads 

g3(l,2,3) = g2(l,2) g2(l,3) g2(2,3). (IV-28) 

In terms of potentials of i-nean force, 

W3(l,2,3) = W2(l,2) + W2(l,3) + W2(2,3), (IV-29) 

and in terms of the specific distribution functions in configuration space, 
it can be written 

P3( ri, r2, r3) Pz{r„r^) Piiri,^^) Pz(^z.^i) 
^ = = ^ = = =— • — = ; - ' =: T^-. (IV-30) 

Pi(ri)pi(r2) Pi(r3) Pi( r j Pi( rj) Pi(ri)Pi(r3) Pi(r2)pi(r3) 

Except for terms of order N'^, it is equivalent to (IV-27). If (IV-27) is 
substitutedin (IV-20), one obtains the approximate equation 

J_ aiog n2( ri, r2) 5012 1 

P sTi 
S012 1 fa0i3 , - ^ . ^ 
T ^ ' T l / - r -n2 ( r i , r 3 ) n2(r2, r3) drj. (IV-31) 
dri 1^ J ar , 

This equation, in which n2 is the only unknown function, is generally called 
the Born-Green equation. It is widely used to obtain approximate pair 
distribution functions. 

If (IV-27) is assumed for every i and substituted in (IV-26), one 
obtains 
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1 a log n 2 ( r i , r2 ,?) 

"i al - ^ /0.3{n 

•P "2^ 

2 ( r i , r 3 , ^ ) n2(r2, r^,?,) 

n 2 ( r „ ? 3 . ? ) M r 3 - (IV-32) *i.?3.?)} 

This is the Kirkwood integral equation for the pair distribution function. 
Whereas (IV-20) and (lV-26)are exact, (lV-31) and (lV-32) areonly approxi­
mate. One can expand both the exact and the approximate Uj functions in a power 
ser ies in the density p. We shall see that the te rm in p^ in the approximate 
(Born-Green or Kirkwood) n^ function begins to deviate. It is hard to know 
just how good the approximate n2 function is at higher (e.g., liquid) densities. 

One might as well have started from the next higher equation in 
the hierarchy (IV-18), the one relating n3 and n^. One can then make for n4 
an assumption analogous to the superposition assumption (IV-27). This 
probably gives an improvement compared with the above procedure. 

D. The Fluctuation Integral: 1 + P J {g(?) - O d?* 

In Ch. I, we mentioned the relation 

l + p j { g ( r ) - l } d r = ^ ^ „ ^ ^ ^ (IV-33) 

[cf. (1-4)], where n ^ is the number of particles in an arbi t rary volume Q., 
which, however, should be small compared to the total volume of our system, 
but still large compared to the correlation length, i.e., the distance for 
which g(r) - 1 has become zero essentially. In a similar way, one can 
express 

<4>-<"»y 

in t e rms of an integral of g3( r i , ?2. ^3)- This type of integral is sometimes 
called a fluctuation integral. We will prove (IV-33) now. We have 

N r 

"" ^ •^ J o 1 = 1 • ' H 

From our definition (III-15), we see that 

6( r - ri) dr. 
1=1 -^n 
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n, r = N Je"P d?i...drNJ- Je j 3 V ( r , r 2 , . . . , r 
^' d r 2 . . . d r N 

{/• N i le'^^ dri . . .drN } " J e - P ^ ( ^ " ^ ^ ^ N ) , ( 7 . - ) a r i . . . d r ^ 

/ N \ 

Hence, 

<"n> = I "i(^) '^^• 
"'a 

( IV-34) 

S i m i l a r l y 

N N 
"n = Z Z f f 6 ( T - r i ) 6 ( 7 ' - T j ) d r - d r ' 

1̂ 1 j=i -'a ~'n 

N ^ N ^ ^ 
y I 6 ( T - ? . ) d r + y i ( 6(r-?i) 6(?-Tj)drd?. 
i=i -'n iTj -^i^ -̂ fi 

Again , f rom our def ini t ion (III-14), it i s e a s i l y ve r i f i ed that 

. N N 

n2(T,r') = <( Z Z 6('?-^i)6(7'-7j)N , ( IV-35) 

and t h e r e f o r e 

< n ^ > = < n j ^ > + j j n 2 ( r , r ' ) d r d r ' 

< 4 > - < " n > ' = < " f i > + X j {'^2(r, r ' ) - n i (7 ) n i ( 7 ' ) | dr d r ' 
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Hence, 

,2 ^ ^ „ -̂ .̂  
<"n>-<"a> , r r"2(ri2) -1 ^ 

= 1 + p \ 1 }• dri2. (IV-36) 
< " n > JQ I P' } 

or in the thermodynamic l imit 

<4>-<"n>' 
= ^ +pf { g ( r ) - l | d r , (IV-37) 

where now the integral must be extended to infinity. 

Remark 

If in (IV-36), n were taken to be V (total volume), we would 
have got 

1+p J l ^ ^ i * ^ -l} dr2 = 0. (IV-38) 

From (III-7), one easily verifies that this relation is indeed exact. 
On comparing (IV-37) and (IV-38), one real izes that one ought to be 
careful in replacing n^i^i.^^,) by p^g(7i2). As remarked before, 
these quantities a re equal except for t e rms of order N" ' .* When 
integrating over the total volume V, these t e rms would become 
important. As long as 0, « V, these te rms can be neglected in 
the integration over volume H, and for such volumes fl, (IV-37) is 
valid. 

E. The Integral: I ±̂ —1 dr f g(7) - 1 

This integral , which should not be confused with that occurring in 
(IV-37), plays a remarkable role in the static approximation of scattering 

*For the ideal gas, for example, 

-. ^ N(N- 1). 
" 2 ( ^ 1 . r2) ^ ;^—. 

hence, 

n2(?i,72) ^ J_ 
~' • N ' 

which approaches 1 for large separation only when t e rms of order N" a re 
neglected. 
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(cf. Introduction). For the content of this section, see G. Placzek, B. R. A. 

Nijboer, and L. Van Hove, Phys. Rev. 82, 392 (1951). In the static theory 

of scattering, we derived the formula of Zernike and Prins [cf. (I-2)J: 

a{7) = 1 +p r | g ( 7 ) - l ] . e''^-^ d? (IV-39) /K'-'}'" 
Here, fc = k,, - k, p is the density, and the cross section is expressed in 

units of the cross section of an isolated particle. For convenience, let us 

introduce as unit of length the cube root of the volume per particle; then, 

p = 1. Further, we introduce K. = 277 h. 

Then (IV-39) simplifies to 

o(h) - 1 = j | g ( r ) - ll e^'^i^-r ^r. (IV-40) 

Suppose we now want to find the total scattering cross section for a ran­

domly oriented system (e.g., a polycrystal or a liquid). We must then 

integrate over all angles and at the same time average over all directions 

of h. It is convenient to combine these two operations. If we express 

the total cross section in units of the total cross section of an isolated 

particle, we have 

dOh 
/2) d(cos 9) I a(h) I (1/2) d(cos 9) I c 

47T 

where df2ĵ  is an element of solid angle in h-space. Because 

y. I?A\ • ^ {2(1 -cos 9)}'^^ 
h = 2 / A ) s i n — = • , 

' 2 X 

d(cos 9) = 

and hence 

X' 
' ' t o t - 8^^ 

-X^h dh. 

^2/X 
1 h dh 

• ' 0 

JQ(h) d^h = - ^ J a(h h ) ^ 

S ^ 

where the integration has to be extended over a sphere of radius z/x 

One can also write 

, X' f \ - a(h) _,-• 

°t°t 8^ 1 ~~h '^^- ( I V - 4 1 ) 
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For large h (i.e., X/[2 sin (9/2)] « atomic distances), interference effects 
become negligible and a(li) tends to 1. As a consequence, for short wave­
length of the incoming radiation, the integration in (IV-41) may be extended 
over the whole of h-space. 

We have then, for this asymptotic value, 

- 1 - — I (IV-42) 
Otot.as - ^ 8-?r ' 

where 

J _ f l - a(h) ^^ ^ fi - g ( 7 ) ^ - (IV-43) 
J h J -nr"-

The latter equality follows from (IV-40) and Parsefa l ' s theorem and by 
noting that l / h is the Fourier transform of lA'TTr^). The problem was to 
evaluate I for dense systems as crystals and liquids. For an ideal rigid 
lattice, g(r) is just a sum of 6-functions, and the integral (IV-43) reduces 
to a lattice sum, which unfortunately converges extremely slowly. It is 
hard to est imate I from (IV-43). However, one may apply the following 

procedure: 

-7Tr \ ^ 
^dr . 

By applying Parsefa l ' s theorem again for the second integral, we find 

where 

2 

y^-'x 
r e-t^ dt $(x) 

is the so-called e r ro r function. Now 

J Tir 
r _» 

dr = 2, 
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and 

hence. 

fi l : ^ ) d h 

1 = 3 - j g(7) ^ — - dr- - I a(h) i i ^ dh. (IV-44) j"g(7) ^ ^ dr - Ja(h) 

The factors e-^^ /(7Tr^) and 0(^71 h)/h make both integrals converge very 
rapidly. 

We see that three is an upper bound for the integral I, and for dense 
systems one may expect the deviation from three to be small. The reason 
is that g(0) = 0, and for values of 7 where g(7) becomes appreciable, the 
second factor in the first integral has already become very small . Some­
thing similar holds for the second integral: 

a(0) = 1 + j {g(7)- l}d^ = XT-

i.e., the relative isothermal compressibility, which for dense systems is 
only a few thousandths. 

From (IV-44) it is easy to compute I for a rigid lattice. Some r e ­
sults are compiled in the following table [S is the first integral in (IV-44), 
R the second]: 

f ee 
h e p 

b c c 

Simple cubic 
Diamond 

0.058191 
0.058193 
0.059068 
0.086169 
0.164718 

0.053347 
0.053340 
0.053650 
0.076533 
0.141882 

2.888462 
2.888377 
2.888282 
2.837298 
2.693400 

These results indicate that a more open structure leads to smaller 
value of I. In the paper quoted on page 32, I was also evaluated for harmoni­
cally vibrating lattices. If we put 

1 = lo - Id. (IV-45) 
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where IQ is the value pertaining to the rigid latt ice, it is found that Id is 
essentially positive and is given by 

Id = PXT- (̂ -̂* )̂ 

where j3 is a numerical factor =1.5, and Xj is the relative isothermal 
compressibi l i ty =0.003 at room temperature . 

For liquids, (IV-44) makes it possible to estimate I with an accuracy 
of about 5%. 

An intriguing question is what is the maximum value that I can have. 
It seems ra ther plausible that the maximum value is reached for the fee 
s t ruc ture , but as far as I know no proof has yet been given. 

It will be obvious that the question for which s t ructure the integral 

K = J^^l^ dr (IV-47) 

has a minimum, is closely related to the question posed above and that the 
answer will be just the reciprocal s t ructure to the solution of the first 
problem. One would then surmise that K would be a minimum for the rigid 
bcc lattice (which is reciprocal to the fee lattice). Now K has a simple 
physical significance. It represents the energy (per particle) of a system 
of negative point charges in a neutralizing positive background, if we con­
sider the electrostat ic energy only. Indeed, it is generally assumed that 
for a low-density electron gas, a bcc s t ructure would have minimum energy 
(Wigner, Fuchs). The energy value itself follows immediately from the data 
in our table on page 34. 
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V. THE ONE-DIMENSIONAL SYSTEM 

We will now briefly consider the application of our formulas to a 

one-dimensional system. (Cf. Gflrsey, Proc. Cambr. Phil. Soc. 46, 182 

(1950); Van Hove, Physica J^, 137 (1950); and the book of Munster, 

mentioned in the Introduction.) 

Let us first try to evaluate 

QN = ^ / e " ' " ' ' ^ ^ ' ' " ^ -N)^idx2...dx^. 

Let us suppose that the potential energy V is a sum of terms be­

tween nearest neighbors only; i.e., 

V(xi xp̂ ) = ^ 0(xi+i-xi). (V-1) 

Let us take 

0 = Xo< xi < X2 < . . . < XN < xj^^j = L. (V-2) 

That is, we take XQ and Xĵ ^ fixed at the ends of our "volume" L, and 
the order of the other particles is given. Then, 

N 

1 r^ r^ r^ -'^.I *(xi+i-xi) 
Q N ( L ) = ^ I dxN / dxN-i . . . j dxie 

-'o -'o •'o 

N 

^ L ^XN /.X2 -^ Z *(^i+' - ^i) 
= dxj^ / dxj^., . . . j dxie 

1 = 0 
le 

f d x N e - ' ' * ( ^ - ^ N ) r " ' ' d x j , . , e - ' ^ * ( - N - X N - i ) 

•JQ •'0 

r'''dx,e-'^*(^^-^')-^*(^i). 
" ' o 

(V-3) 

Now take the Laplace transform of QN(L) , which is an (N + l)-£old 
convolution product: 
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Q N ( S 

r*00 

= I e-^l-QN(L) = {5(s)}N+', 

w h e r e 

5 ( s ) = / e - s x - P 0 ( x ) d x . 
Jo 

(V-4) 

By apply ing the i n v e r s i o n f o r m u l a of L a p l a c e t r a n s f o r m a t i o n and 
eva lua t ing the r e s u l t i n g i n t e g r a l , e .g . , by the t h e o r e m of r e s i d u e s , one 
ob ta ins Q N ( L ) - Le t us f i r s t c o n s i d e r the s i m p l e c a s e of o n e - d i m e n s i o n a l 
h a r d s p h e r e s ( r o d s ) w i t h l eng th a. In th i s c a s e , 

$ ( s ) = r " e — d x = i : p . (V-5) 
•J a. 

We then have 

Q N ( L ) = ^ { L - ( N + l ) a } N , L > ( N + l ) a ; 

= 0 L < (N+ 1) a. ( V - 6 ) 

F r o m 

/2TrmkTNN/2 
F -kT log Z N = - k T log y 1 j - kT log Q N . 

we then find 

IM.\ = NkT (V-7) 
P " - \ a L / T L - ( N + 1) a ' 

I n t r o d u c i n g the a v e r a g e l eng th p e r p a r t i c l e i = L / ( N + 1). and neg lec t ing 1 

c o m p a r e d to N, we obta in 

p ( i - a ) = k T . ( ^ - « ) 

Th i s i s the w e l l - k n o w n equa t ion of s t a t e for o n e - d i m e n s i o n a l h a r d s p h e r e s , 

wh ich w a s f i r s t ob ta ined by Tonks in 1936. 

R e m a r k 

One m a y e a s i l y ve r i fy tha t t h i s equa t ion of s t a t e can a l t e r n a ­
t i v e l y be d e r i v e d f r o m the v i r i a l equa t ion in one d i m e n s i o n . 
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/^-t-oo 

pL = NkT - ( l /2 )Lp^ / g ( x ) x | ^ d x , (V-9) 

by substituting the pair distribution function g(x) for one-
dimensional rigid spheres as derived in Ch. I. Notice, however, 
that the average length per part icle I was called there £ + a. 

In the more general case of an arb i t ra ry two-particle interaction 
(but still restr ict ing ourselves to nearest-neighbor interaction only), we 
have 

/^C+lco 

Q N ( L ) = - ^ / esL {J(s)}l^+' ds, (V-10) 
-'c-ico 

where c is chosen so that it is positive, and the path of integration lies to 
the right of all poles of 0(s). One may then close the path of integration by 
an infinitely large circle enclosing the left-hand portion of the complex 
s-plane and evaluate Q N ( L ) by the theorem of res idues . Alternatively, in 
the thermodynamic limit N -• oo, L — oo, i = L / ( N + 1) finite, one can evalu­
ate log Q N ( L ) by the method of steepest descent. We have, for the integrand 
in (V-10), 

eSL($(s)}N+i ^ (gSi5(g)}N+i , ^(N-n)X(s)^ (V-U) 

where 

X(s) = si -^ log $(s). (V-12) 

The first factor, e^I-' increases with s very strongly, while the second 
factor, 

{5(s)}N+\ 

decreases with s very strongly. 

The saddle point SQ of the integrand of (V-10) is given by 

X'(so) = i + ( ^ l o g 5(s)) = 0. (V-13) 
'S = S(, 

By expanding X(s) around So and performing the integration, one 
finds 
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lim { Q N ( L ) } ^ ^ ' = e'''^5(s„). 
N-oo 

or 

lim log Q N ( L ) = SoL+ (N-f 1) log 5(so). (V-14) 
N-oo 

We now see that the p r e s su re p is given by 

p = kT 
a log QN(L) __ ^ ^ 1 ^ ^ ^ ^^^^^ ^^ ^ _|_^^g 5(̂ )̂j i f i j __ i,T,„. 

aL 

(V-15) 

by vir tue of {V-13), so that in the thermodynamic limit, 

Q N { L ) = e P V k T | $ ( ^ ) } ' " \ (V-16) 

and {V-13) becomes the equation of state, 

where $ was given by (V-4). 

One can show that for 0 < T < oo , 

i .e. , the p r e s s u r e decreases monotonically with increasing volume per 
par t ic le . For T - oo, one finds that p -> k T / i ; and for T = 0 (if the 
interaction has the usual form with a minimum at x^^), one finds 

p = -0'(i) , .« < x ^ ; 

= 0, i > ^ . (^-19) 

Remarks 

1. Giirsey has evaluated the isotherms for a potential 
consisting of a hard core + a rectangular attraction well (cf. his 
paper) . 
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2. Van Hove has generalized (V-18). He shows that it holds 
in the one-dimensional case for an arbi t rar i ly large but finite 
range of the force, without restr ict ing himself to nearest-neighbor 
interaction only. This shows that a one-dimensional fluid has no 
phase transition. 

In a similar way as the configuration integral, one can compute the 
distribution functions, in particular the pair distribution function, for a 
one-dimensional system with nearest-neighbor interactions only. 

Let us consider again for a moment the situation described by 
(V-2). According to the canonical ensemble probability, the probability 
to find N part icles at X], X2, .., xj,̂  is 

nj.g(x,, ...xj,^) = Q^exp{-P[0(x i ) + 0(x2-Xi) + ... + 0 ( L - X N ) ] } . (V-20) 

To find the probability that the kth part icle is at x, one has to 
integrate this expression over all coordinates except xk = x. Fixing the 
position of the kth particle at x divides the system in two pa r t s , one 
with length x and k - 1 par t ic les , and the other with length L - x and 
N - k part icles . 

One finds in this way, 

- ^ V Qk-i(x)QN-k(L-x) 
Pg(x) = 2 . - i (V-21) 

k Q N ( L ) 

Let us again take the case of hard rods. Using now (V-6) and 
going to the limit N -• co, L ^ 00, one is led back to the result of 
Zernike and Pr ins , derived in Ch. I. 

Remark 

In the case of one dimension and nearest-neighbor interaction, 
it is rather obvious that the superposition approximation in the 
form g3(l, 2, 3) = g2(l, 2) g2(2, 3) is strictly valid. As a result , 
the Born-Green equation is also rigorously valid in this case. 
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VI. THE MAYER CLUSTER EXPANSIONS 

A. The Mayer Equations 

I propose to spend the remaining time available for these lectures 
on the Mayer cluster expansion and some related topics. Here we have, 
so to speak, the prototype of modern many-body theory and the method of 
d iagrams. This many-body theory has in the last 10 years or so shown a 
tremendous development, mainly in the treatment of interacting quantum 
systems. The inspiration has largely come from field theory and the 
method of Feynman graphs. However, some of the methods and considera­
tions can be t raced back to the Mayer cluster expansion (e.g., the reduction 
to connected diagrams). And, of course, if, e.g., in the Lee-Yang theory 
of interacting quantum par t ic les , one goes to the limit H ^ 0, one is led 
back to the Mayer theory, and the graphs of Lee and Yang reduce to the 
Mayer graphs. We shall t ry to give a modern account of Mayer 's theory, 
in which the connection with recent theories comes out a little more 
clearly than in the original t reatment . 

The configuration integral Q N is given by 

Q ^ = _ i j ; - p ^ ( ^ - ^ - ••••^N)d?-,d?2...d?N- (^1-1) 

We shall usually (though not always) suppose that the potential energy is 
a sum of two-part icle interactions 

V ( ? i , r 2 , .... rN) = Z *('^ik)- ^""^"'^ 
i<k 

The molecular distribution functions are given by integrals similar to 
(VI-1). Once we know Q N , we can compute all thermodynamic quantities. 
In par t icular , the equation of state is given by 

a log Q N (VI-3) 
P = kT . ^ av 

However, calculating these multidimensional integrals is difficult. 
J. Mayer (1937) succeeded in expanding log Q N in a power ser ies in the 
density. F r o m there , one is led immediately to the so-called virial ex­
pansion of the equation of state. We shall not touch upon the difficult 
problems related to the convergence of these expansions and to condensation. 

Instead of 0(r), which goes to infinity at short range, Mayer intro­
duces the function 

f,^{r,p = e - ' ^ * ( ^ l 3 ) . l . {VI-4) 
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The g e n e r a l f o r m of f(r) looks l ike 

f(r) 

-1 

F o r h a r d s p h e r e s , f(r) looks l ike 

f(r) 

w h e r e a i s the d i a m e t e r of the s p h e r e s . Now Qĵ j can be expanded in a 
s u m of i n t e g r a l s over p r o d u c t s of f ' s : 

= 17; hT(i+C^j) d7,...d7j^ 

= F:/('Vl^U^^ 11 hM^h 1 1 1 h, 
•^ \ i<J i<J k<.e i<j k<i m<n 

%fmn + •• <i?'l--d 

no equal 
pairs 

no equal pairs 
(VI-5) 

E a c h t e r m can be r e p r e s e n t e d by a g r a p h , e .g . , 

.•^(i+fij) = : M M i + n + p^. 
' ^^ (1) (6) (3) (12) (4) 

n + L^ + bJ + • + izi + 
(1^) (4) (12) (3) (6) (1) ( v i - 6 ) 



43 

Each of the four points is represented by a dot. A line connecting i and j 
represen ts a factor f̂ ;. The numbers in parentheses give the number of 
t e rms represented by each graph when one labels the four points. 

One will understand that in this theory the concepts of linear 
graph theory (i.e., points and lines between pairs of points) will play an 
important role. Let us mention a few definitions. A simple graph is a 
graph in which two points are connected by at most one line. A connected 
graph is one in which there is at least one path between any two points. An 
articulation point is a point where a graph can be cut into two or more 
disconnected pa r t s . A graph without articulation points is called a star. 
A general connected graph is built from stars hanging together in the a r ­
ticulation points. If the s tars are just single lines, one calls the graph a 
Cayley t r ee . If the s ta rs are polygons, the graph is called a Husimi t r ee . 
For example: 

Connected graph with 
articulation points ® 

Star Cayley tree 

Let us re turn now to the expansion (VI-5). If we take the first t e rm 1 only, 
then Q N = V ' ^ / N I , and p = NkT/V; i.e., one obtains the ideal gas law. 
If one res t r i c t s oneself to so-called simultaneous two-particle collisions, 
i.e., if one includes t e rms like fi2f34f67 b*̂ * excludes t e rms like fi2fi3 (one 
takes into account graphs consisting of disconnected single lines only), then 
one finds 

Q N 
V^ (1/2) N^ 
NT "̂ P V 

where 

/ ' 
f{r) dr, 

and 

pV = NkT ( • - ^ ) -
{VI-7) 

That i s , one obtains the correction to the ideal gas law to first order in the 
density. If one includes clusters of three par t ic les , one obtains the next 



t e r m in the dens i t y expans ion , and so on. T h e r e a r e s e v e r a l w a y s to t r e a t 
t h i s in a m o r e s y s t e m a t i c way. One i s by m a k i n g u s e of g e n e r a l t h e o r e m s 
f r o m the t h e o r y of l i n e a r g r a p h s . (Cf. the l e c t u r e s by Uh lenbeck and F o r d 
quo ted in the In t roduc t ion , w h e r e a l so the p roo f s of t h e s e t h e o r e m s a r e 
g iven . ) 

T h e o r e m I: Let G N be a g r a p h of N po in t s e i t h e r connec t ed or d i s ­
connec ted . Suppose that wi th e a c h g r a p h a weight W ( G N ) 
be a s s o c i a t e d , which s a t i s f i e s the following two cond i t i ons : 

(a) W ( G N ) is independent of the l abe l ing of the p o i n t s . 

(b) W ( G N ) is a p roduc t of the w e i g h t s of a l l c o n n e c t e d g r a p h s 
forming the o r ig ina l g r a p h ; i . e . , 

W(GN) = n w(c^), 

w h e r e Go is a connec ted g r a p h of £ p o i n t s . 

Now define; 

FN = Z W(GN). 
( G N ) 

w h e r e the s u m m a t i o n is over a l l g r a p h s of N p o i n t s , and 

Z W(C£) 
(C£) 

w h e r e the s u m m a t i o n is over a l l connec ted g r a p h s of S, p o i n t s . I n t r o d u c e 
nov/ the g e n e r a t i n g funct ions 

M TT „ N 

Z N 

-fy-' 
N = i 

and 

CO 

f(x) = I 
f .x^ 

Then T h e o r e m I says that 

1 + F ( x ) = ef(x). • (YJ.8J 

The proof of th i s t h e o r e m is s i m p l e though r a t h e r a b s t r a c t , and we wi l l 
not r e p r o d u c e it h e r e . 
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In our case [cf. the expansion (VI-5)], we take 

W(GN) = f7riii^^i--^^N-
>/GN 

This definition satisfies the two conditions on the weight mentioned above: 
it is independent of the labeling of the points because we integrate over all 
coordinates, and it is the product of the weights of disconnected par ts . 

Now 

Q = W' Z, W(GN). N N : 
(GN) 

where the summation is over all graphs of N points. We further introduce 
the cluster integrals 

b i (V ,T)= ;^ [ Z 7rfijd?:...di (VI-9) 

The factor V"' is introduced so that for large V (thermodynamic limit), 

b^(V,T) - b^(T), (VI-10) 

that is, becomes independent of V. 

Theorem I applied to our case gives 

y Q N Z N = exp J X Vb^z^r = e^P [VX(V,T,z)], 
T ^ o I- -« = ' J 

(VI-11) 

where 

X(V,T,z) = Y, ^l-^^-
{VI-12) 

The relation (VI-H) is called the first Mayer theorem. From the definition 
{VI-9), we see, for example. 

bi = 1. b j ^ Jdr,d?2£,2 = -JT/'(')'*'"• 

3 
, and b , = cf. l as t line of (VI-6). 

(3) (1) 

(VI-13) 
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The n u m b e r s in p a r e n t h e s e s give the n u m b e r of t i m e s the g r a p h h a s to be 
coun ted (e .g . , one l ine can be left out in t h r e e d i f fe ren t w a y s ) . 

1. A l t e r n a t i v e Method 

with 

Let us now b r i e f ly i nd i ca t e a n o t h e r d e r i v a t i o n , i n i t i a t e d by 
U r s e l l , wh ich does not r e q u i r e the a s s u m p t i o n of two p a r t i c l e i n t e r a c t i o n s 
and wh ich m o r e o v e r can be adap ted i m m e d i a t e l y to the q u a n t u m m e c h a n i c a l 
t r e a t m e n t . 

We have 

"^N = 1 ^ j ^ N d n - . - d r N -

Wj^ = e - ' ^ ^ ^ ^ " •••' ^ N ) . (VI-14) 

In the p a r t i c u l a r c a s e of p a i r - w i s e i n t e r a c t i o n s , 

W N = 7 7 " ( l + f i j ) - (VI-14a) 
i < j 

Not ice that W N ~* 1, if a l l p a r t i c l e s a r e far a p a r t . Now we define the 
U r s e l l c l u s t e r funct ions U^ : 

U i ( l ) = Wi( l ) = 1, 

U2( l , 2 ) = W2( l ,2 ) - Wi( l ) Wi(2), 

U3(l , 2, 3) = W3(l, 2, 3) - W2(l, 2) Wi(3) - W2(l, 3) Wi(2) - W2(2, 3) W, ( l ) 

+ 2Wi( l ) Wi(2) Wi(3), (VI-15) 

and so on. If n i s the n u m b e r of f a c t o r s , t hen the coeff ic ient is 

( - l ) ' ^ - ' ( n - l ) . ' 

T h e s e equa t ions a r e equ iva len t to 

W, ( l ) = Ui ( l ) = 1, 

W2( l ,2 ) = U2( l ,2 ) + U i ( l ) Ui(2), 

W 3 ( l , 2 , 3) = U 3 ( l , 2 , 3 ) + U2( l , 2 ) U,(3) + U 2 ( 1 , 3 ) Ui(2) + U2(2, 3) U i ( l ) 

+ U , ( l ) Ui(2) U,(3), (Vl-16) 

and so on. We have r e p r e s e n t e d W„ as a s u m of p r o d u c t s of U - f u n c t i o n s . 
A p r o d u c t wi l l conta in m ^ U ^ ' s w h e r e 
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N 
y .em, = N. 

i= i ^ 

It is not difficult to prove that U^(l, 2, ..., &) vanishes for so-called 
separated configurations, i .e. , if the Jl, molecules can be divided into two 
or more groups that are so far apart that there are no interactions between 
the groups. The asser t ion is based on the fact that for separated con­
figurations, W^ factorizes,. It can be checked in a straightforward way 
for i = 1 , 2 , 3 and can be proved for the general case by induction. 

We now define the cluster integrals , 

^£ =jhj^^^^" •••• ^'i^'^^'---'^^^- '̂ ^"^ '̂ 

One may verify that for the special case of two-particle 
interactions, (VI-17) is equivalent to (VI-9), because in \j£ the dis­
connected graphs cancel according to {VI-15). 

The integral over any product of U functions in (VI-16) becomes 

(i.'b,v)"^'.(2;b2V)"^^.. =77'{i.'biV)"^^ 
i 

when there are m^ c lus ters of £ par t ic les in the products. Remember that 

N 
X^m^ = N. 

1 

Other t e rms in the expansion (VI-16) can be obtained by permutations of 
molecules, except those within a subgroup (a U-function), and except also 
those obtained by permutat ions of subgroups of equal size. The total 
number of these t e r m s is then 

Hence, by integrating W N over the coordinates of all par t ic les , we obtain 

2.«mo=N 
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w h e r e the s u m is ove r a l l p a r t i t i o n s of N p a r t i c l e s , sa t i s fy ing 

N 
^ i m ^ = N. 

Re la t ion (VI-19) e x p r e s s e s Q N as a s u m of p r o d u c t s of c l u s t e r i n t e g r a l s 
b ^ . Or (in the c a s e of p a i r - w i s e i n t e r a c t i o n s ) the c o n t r i b u t i o n of the s u m 
of a l l g r a p h s of N po in t s is e x p r e s s e d as a s u m of p r o d u c t s of the c o n t r i b u ­
t ions of connec ted g r a p h s only. 

The r e l a t i o n s (VI-19) can be i n v e r t e d to 

O^i 

vbi= Z ( - i ) ^ q ' 7 r - ^ . (VI-20) 
( n j 1 "i-

where 

q = X ni - 1 
i = i 

and 2^ is the sum over all pos i t ive in t ege r c o m b i n a t i o n s {n^} such that 
(nj 

z m i = 
i = i 

F o r s m a l l i n d i c e s , one can check (VI-19) and (VI-20) d i r e c t l y 
f rom (VI-16) and (VI-15). The f i r s t M a y e r t h e o r e m can now be ob ta ined . 
If n a m e l y (VI-19) or (VI-20) ho ld s , then we have 

5 Q N Z ' ^ = e x p J J V b ^ z H ; (VI-11) 
N=o li = i J 

i . e . , the power s e r i e s 2 . Q N ^ ( r e m e m b e r that Qj^ =: 0) can be w r i t t e n 
N 

as an exponent ia l . One can ver i fy th i s by equat ing coef f ic ien ts of equa l 
p o w e r s of z s u c c e s s i v e l y , but it can be p r o v e d g e n e r a l l y . Both s e r i e s 
should c o n v e r g e . 
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Remark 

The relation {VI-11) with {VI-19) or (VI-20) is a case of the 
so-cal led cumulant expansion in s tat is t ics . If x is a random 
var iable , then 

<e4-> = £ 4%N fv" ^'''^^ 
exp N; - ^-^^ f. £'. 

where the moment |UN = <xN>, and the cumulant K̂  = <^^>cu.ra-
(The latter average is called a cumulant or connected average.) 
One can express the cumulants (or semi-invariants) in te rms of 
moments and inversely, and these relations are equivalent to 
(VI-20) and (VI-19). The cumulant expansion can be extended to 
the case of several random variables . If these can be divided 
into two or more statistically independent groups, all cumulants, in 
which variables of different groups appear, vanish identically. 

Actually, in proving (VI-11), we did not need the full cumulant 
theorem, but only the relations between the coefficients of a certain 
power se r ies and the coefficients of the power ser ies representing 
the logarithm of the first one. Br out (cf. Brout and Carruthers , 
Lectures on Many Electron Problems, Interscience 1963) uses the 
cumulant theorem in a more complete way by applying it to 

QN=i7r/e-^^^-

which can be considered as an average of an exponential over phase 
space Log Q N is then expanded in powers of P, but in the co­
efficients, averages of powers of 0(r) occur, which strictly makes 
no sense. By summing over so-called ladder diagrams, Brout is 
then able to obtain the vir ial expansion for log QN-

We shall now derive the so-called Mayer equations. We have 

[cf. (VI-11)] 

J Q N Z N = expVX(V,T,z ) . (VI-H) 
N=o 
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C a u c h y ' s t h e o r e m l e a d s to 

Q N = - ^ ^ d z z - N - ' e V X . (VI-21) 

w h e r e z - N - ' d e c r e a s e s s t rong ly along the p o s i t i v e z - a x i s , and 

e Z QN̂  VX = y o^izN 

i s a p o l y n o m i a l in z wi th p o s i t i v e coeff ic ients (po lynomia l , s i nce we can 
p a c k only a f inite n u m b e r of p a r t i c l e s in a vo lume V). Hence e'^'^ w i l l 
i n c r e a s e s t r o n g l y along the p o s i t i v e z - a x i s . The i n t e g r a n d of (VI-21) 
wi l l have a s h a r p m i n i m u m at a c e r t a i n point ZQ on the p o s i t i v e z - a x i s . 
One m a y then apply the m e t h o d of s t e e p e s t d e s c e n t . We w r i t e the i n t e g r a n d 
a s 

eNK(z)^ 

w h e r e 

V N + 1 
K(z) = ^ X ( V , T , z ) - ^ ^ l o g z . 

In the t h e r m o d y n a m i c l i m i t , 

N ^ 00, V -> 00, ^ = V, b ^ { V , T ) - " b ^ ( T ) , 

[cf. (VI-10)] we a s s u m e that 

X(V, T, z) - X{T, z) , 

so that 

K(z) -> vX(T, z) - log z. 

Then, 

and 

K'(zo) = 0 — + v ( ^ - l , VI -22 
zo \az /2= ,„ 

1 
K(z) = K(zo) +—(z - Z„)2K"{ZO) + . . . (VI-23) 



51 

We know from the theory of complex variables (remember the 
equations of Cauchy-Riemann) that K(z) has a sharp maximum in ZQ along 
a line passing through ZQ paral lel to the imaginary axis. Then, applying 
(VI-23), 

^TSi 
^ / ' 

dz eNK{z) = ^ 
NK(zo) 

y27 :NK"(zo ) 

(VI-24) 

One t h e n f inds for the f r ee e n e r g y p e r p a r t i c l e 

f(v, T) = - k T vX{T, Zo) - log 
h 'zo 

{2•7TmkT)='/^ 
(VI-25) 

H e n c e , 

p = - - 1 ^ = kTX{T,zo) ov 

[the other t e r m s cancel because of (VI-22)], and from (VI-22), 

1 _ a~(T, ZQ) 

From the definition of X [cf. (VI-12)], these equations may be written 

^ = Z M(T) z 
kT 

and 

£ = 1 

CO 

T = Z ^^£(T) Zo • 

(VI-26) 

These are the famous Mayer equations. 

2. The Grand Canonical Ensemble 

By means of the grand canonical ensemble, the derivation of 
the Mayer equations from the first Mayer theorem (VI-U) is almost im­
mediate. Let us therefore digress a moment and consider this ensemble 
in a little more detail. It can be considered as a collection of canonical 
ensembles with varying number N of par t i c les , in a s imilar way as the 
canonical ensemble could be considered as a collection of naicrocanonical 
ensembles with varying energies . 
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Suppose we look at a m a c r o s c o p i c s u b v o l u m e V of a s y s t e m 
e n c l o s e d in a l a r g e vo lume V . We d e s c r i b e the s y s t e m by a c a n o n i c a l 
e n s e m b l e . One can then c a l c u l a t e the p r o b a b i l i t y to find, in the s u b -
v o l u m e V, N p a r t i c l e s in the p h a s e ^ i , 'r^, •-•, T N , Pi , P2. •••. PN- ^ ^ e 
r e s u l t i s 

P ( N , ? , pf^) = — e x p { - P p V + /3NM- PH(?'i, . . . , P N ) } - (VI-27) 
,3N 

H e r e p i s the p r e s s u r e , 

af 
p. = f(v, T) - v ^ = f + p v 

is the t h e r m o d y n a m i c po t en t i a l (or Gibbs f r ee e n e r g y ) p e r p a r t i c l e , and 
exp(-/3pV) s e r v e s as a n o r m a l i z i n g f ac to r b e c a u s e n e c e s s a r i l y 

z 
N=o 

N; dri. . .dp-N = 1- (VI-28) 

The i n t e g r a t i o n inc ludes a u t o m a t i c a l l y a l l p e r m u t a t i o n s of the N p a r t i c l e s 
o v e r the c e l l s di^ldpi, . . . , di^NdpN; hence we m u s t d iv ide by N! 

As a g e n e r a l i z a t i o n , we now def ine , for a g iven kind of p a r t i c l e s 
and for g iven vo lume V and t e m p e r a t u r e T, a g r a n d c a n o n i c a l e n s e m b l e as 
an e n s e m b l e such that the p r o b a b i l i t y to p i ck a s y s t e m of N p a r t i c l e s in 
the p h a s e r i , . . . , ^^r is g iven by (VI-27) . The g r a n d c a n o n i c a l e n s e m b l e 
a v e r a g e of a quant i ty A is 

< A > g r = Z . TJ7 A P N d ? i . . . d p N . (VI-29) ?^ / 
The c o m b i n e d s u m m a t i o n and i n t e g r a t i o n can often be p e r ­

f o r m e d m u c h m o r e s imp ly than the (canonica l ) i n t e g r a t i o n a l o n e . In the 
g r a n d e n s e m b l e , the o v e r w h e l m i n g m a j o r i t y of s y s t e m s h a s a n u m b e r of 
p a r t i c l e s v e r y c lo se to the a v e r a g e n u m b e r , so that it l e ads to v e r y 
s i m i l a r r e s u l t s as the c a n o n i c a l e n s e m b l e . 

The g r a n d c a n o n i c a l p a r t i t i o n function is g iven by [cf. (VI-28)] 

(VI-30) ^ g r = 

pV 
kT 

= e -- y ' 
it N.'h^N ^ 

p N/u-H 

j e d r j . --dpN 
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so t h a t 

pV = kT log Zgr - (VI-31) 

In the t h e r m o d y n a m i c l i m i t , one f inds tha t ( k T / V ) log Z„j . b e c o m e s i n ­
d e p e n d e n t of V. It w i l l be a funct ion of p and T. T h e r e f o r e 

P = p( jLi .T) , 

or 

p = p { z , T ) , (VI-32) 

w h e r e 

^ ^ / 2 7 m i k T ' \ " ' ' ^ ^ / k T (VI-33) 

is the s o - c a l l e d ac t i v i t y or fugaci ty . F r o m 

p = i + pv , 

it fo l lows tha t 

m,-m,mr*-*^(^).-
so tha t 

V au / T "^ 
{VI-34) 

To find the e q u a t i o n of s t a t e , p (or z) h a s to be e l i m i n a t e d b e t w e e n (VI-32) 

and (VI-34) . 

Le t u s now r e t u r n to the f i r s t M a y e r t h e o r e m ( V I - H ) : 

y Q ^ Z N = expJ X Vb^zH. 
N=o U = i J 

(VI-11) 

N^o 

t h i s t h e o r e m i s j u s t Zg,. . Hence 

F r o m (VI-30) and (VI-33) , it a p p e a r s tha t the l e f t - h an d s ide of 

1 i s j u s t Zgj. . H e n c e , 



54 

and thus. 

k T T^ 
P = -T-log Z = kT 2 . biz-^. 

1 = 1 
and 

'-m -̂  X ^ ' kT 
ib^z.«. 

(VI-26) 

These are just the Mayer equations (VI-26). Note that (VI-11) above is an 
identity of two power ser ies , valid for all z for which both expressions 
exist. For a part icular value zo of z, which is called the activity, the 
left-hand side of (VI-11) represents the grand canonical partition function. 
It is this value ZQ of z which should appear in the Mayer equations (cf. our 
first derivation of these equations; the index 0 is usually omitted, however). 

B. Virial Expansion of the P re s su re 

Our problem now is to eliminate z between the equations (VI-26) m 
order to arr ive at an expansion of p in powers of the density p, i.e., the 
so-called virial expansion. This could be done by successive approximation. 
Remember [cf. (VI-13)] that bi = 1. Therefore, for small z, p = z, and 
the substitution into the first equation (VI-26) yields p = kTp., which is the 
ideal gas law. Then one could include z^, and so on. A systematic method 
can be applied with the help of another general theorem in graph theory. 
Just as Theorem I was concerned with a relation between disconnected and 
connected graphs. Theorem II leads from connected graphs to s ta r s , or 
from cluster integrals b^ to irreducible cluster integrals P^. 

Theorem II: Let W(C^) be the weight corresponding to a connected graph 
of I labeled points. It should again obey two conditions: 

a) W(C^) IS independent of the labeling of the points. 

b) W(Ci) = 7 7 W ( S ^ ) , 

i .e. , it is the product of the weights of all s tars forming 
C^. Now define: 

H = Z w(c^), 
(c^) 

where the summation is over all connected graphs of 
i points; and 
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-m = Z,W(S^) ' 

where the summation is over all s ta rs of m points. 

Introducing the generating functions 

oo 

f(-) = Z f i 77 . . 

and 

(̂y) = Z ™ m! 
m=2 

(a single point is not a s tar ; therefore m star ts at 2), and calling 

, , df 
T z = z — , 

dz 

then Theorem II states that 

•dr{T)-| (VI-36) , ^ fdr T n 
T{z) = z exp | - J T - | 

For a proof, we refer again to the papers of Uhlenbeck cited in the Intro­
duction. To apply Theorem II to our case, we put 

W{C£) = ^ TTk} d?i...dr^. 
J Co 

The product property of the weights holds for large V. Then, 

Fur ther , we define ,the irreducible cluster integrals (m =: 2): 

' m - i - li™ v(m 
V - * CO 

h) . f Z 7rfijd?i...d?-^. {VI-37) 

Then, 

rri. = ( - - l ) ' P m - i -
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The g e n e r a t i n g 

so tha t 

funct ion 

00 

r(y) = X 
m = 2 

dr (y ) _ 
dy 

00 z 
m = i 

Pm-
m 

Pm' 

is 

- ym 

ym = 

F u r t h e r , 
00 

f(z) = Y. b ^ z i = X(z), 
£=1 

and 

T(-) = - S = Z b̂̂ ẑ  = p. 

Hence T h e o r e m I l e a d s to 

p = ze*(P) 

o r 

z = p e - * ( P ) . (VI-38) 

The r e l a t i o n (VI-38) i n v e r t s the second M a y e r equa t ion . It h a s been d e r i v e d 
in v a r i o u s w a y s by Born and F u c h s , by Kahn and Uhlenbeck , and by o t h e r s . 

We can now obtain the v i r i a l expans ion . F r o m (VI-26) , we have 

rp 

•'0 

^= r 4 d z = f e*(P)d(pe-^P)) 
Jo JQ 

= j ^ e*(P) {e-*(P) dp - P0'(p)e-*(P) dp} 

P - P<P'{p) dp 

P - j f; m p ^ p m d p 
•'0 m = i 

m ^ - ^ ' ' - " ' • (VI-39) 
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If we wri te , as one does conventionally, 

£1 = 1 + 1 ; B^(T)p—', 

m = 2 

then the so-called vir ia l coefficients B ^ are 

Bm(T)= - ^ P m - r 

From (VI-37), it follows that 

{VI-40) 

(VI-41) 

ft = 7 j"fi2dTid72 = J f ( r ) d 7 = y Jd7,d7,[\l], 

fc = 7 ^ jiizi-nh^ dTid72dT3 = -^ jd'?id72d73 { / ^ J ' 

P̂  = -^ j'd?id?2d73d?4{ • + E I + K l } ' 

(3) (6) (1) 

and 

4:v 
P4 = T ^ d r i . . . d r 5 ^ 5 

1 2 
(12) (60) (10) (10) (60) (30) 

+ /X\ + 

(30) (15) (10) (1) (VI-42) 

where the numbers in parentheses indicate the weights of the graphs shown. 
Analogous to the relation (VI-19) between Q N and H. there is an explicit 
relation between H and P^ . In fact, one can prove that £ b^ is the co­
efficient of y^- ' in the expansi of 

exp {•^Z Pmy"^[ = ^^p [̂ *'(y)5-
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O r a l s o . 

(^Pr.)""" F y ir'-^^^^- (vi-43) 
i n m l 'm . 

Zmnj^=.^-i 
m 

In p r i n c i p l e , the v i r i a l coef f ic ien ts can be c a l c u l a t e d a s soon a s the i n t e r ­
ac t i on be tween the p a r t i c l e s i s known. The c o m p u t a t i o n of a l l but the v e r y 
f i r s t i s , h o w e v e r , a difficult p r o b l e m of i n t e g r a t i o n . The m e a s u r e d v a l u e 
of the s e c o n d v i r i a l coeff icient B2 is one of the m o s t a c c u r a t e s o u r c e s of 
i n f o r m a t i o n for the i n t e r a c t i o n be tween m o l e c u l e s . It i s known in m a n y 
c a s e s o v e r a whole r a n g e of t e m p e r a t u r e s wi th in 1% a c c u r a c y . Usua l ly , for 
s i m p l e s y s t e m s , one t a k e s a L e n n a r d - J o n e s p o t e n t i a l 

0 ( r ) = 4 c | f £ f . f £ n . (VI-44) 

The two p a r a m e t e r s e and a can be d e t e r m i n e d f r o m the e x p e r i m e n t a l 
B 2 ( T ) . If e n e r g i e s (kT) a r e e x p r e s s e d in e and l e n g t h s (vo lume) in t e r m s 
of a, a l l g a s e s , w h e r e the i n t e r a c t i o n can r e a s o n a b l y be r e p r e s e n t e d by a 
p o t e n t i a l (VI-44) , show i d e n t i c a l b e h a v i o r in the c l a s s i c a l d o m a i n (law of 
c o r r e s p o n d i n g s t a t e s ) . Once the i n t e r a c t i o n is f ixed f r o m B2, one can 
compu te B 3 ( T ) . In s e v e r a l c a s e s , the r e s u l t ob ta ined f i ts r a t h e r a c c u r a t e l y 
wi th e x p e r i m e n t , wh ich i n d i c a t e s that the u n d e r l y i n g a s s u m p t i o n of p a i r - w i s e 
i n t e r a c t i o n s is not so bad. F o r a s y s t e m of h a r d s p h e r e s , the f i r s t few 
c l u s t e r i n t e g r a l s and v i r i a l coef f ic ien ts have the following t e m p e r a t u r e -
independen t v a l u e s (up to B4, they have been c a l c u l a t e d a n a l y t i c a l l y ) , 
w h e r e conven t iona l ly b = 27Td^/3 = 4 t i m e s the v o l u m e of the s p h e r e s 
(d is the d i a m e t e r ) : 

bi = 1, 

b2 = - b , 

b3 = 1.6875b^ 

bi = - 3 . 5 5 4 b ^ 

b5 = 8 .420b^ 

B2 = b , 

B3 = (5 /8) b ^ 

B4 = 0 .2869b^ 

a n d 

0.1103b^. (VI-45) 
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Remember that, for a Van der Waals gas. 

B2 = b - - S -
^ kT 

B3 = b ^ 

B4 = b ' , e tc . {VI-46) 

C. A Simplified Cluster Expansion [cf. N. G. van Kampen, Physica 27, 
783 (1961)] 

The derivation of the vir ial expansion of the equation of state, as 
reviewed above, is ra ther complicated. F i r s t the partition function Q N 
was writ ten as a sum of contributions from different diagrams. However, 
we want to find an expansion of the free energy, which is proportional to 
log QN> °^ °^ fbe p r e s s u r e , which is proportional to (d log QN)/dV. In 
Mayer 's theory, p was first found as a power ser ies in the activity z, and 
after that the resul t had to be rewrit ten as a ser ies in the density p. 

Van Kampen proceeds by expanding Q N in a product (i.e., 
log Q N in a se r ies ) , and in this way obtains the vir ial expansion directly. 
In his derivation, there is no need to introduce the activity z. Let us 
briefly indicate his procedure . We write 

N . ' Q N = / e - P ( * - ^ * " ^ - * N - > . N ) d ? i . . . d ? N 

= vN(^ i2 fe - -*N- i ,N) - (^^-*^) 

Here, 

*12 = e - ' ^ ^ ' ^ 

and the bar denotes the average over all positions of par t ic les inside V. 
Note that V12 -* i as 

I n - r 2 | -* 00. 

It will be obvious that, with respect to the averaging, ^12 and %i 
are stat ist ical ly independent, as a re ^12 and t n - We have therefore 

?IIfc = Fi2?i3 =T7r'-

However, ^12. ^13. and ^23 are not independent in this sense- Still, for 
smal l density, one can write in first approxinnation 
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fufnfzi = ^12*13*23-

T h i s would be exac t if one of the ^ ' s w e r e one , but the con f igu ra t i ons 

w h e r e a l l t h r e e V's differ f r o m one a r e r a r e for s m a l l d e n s i t y . 

F o r a p r o d u c t of ^ ' s involving m o r e than t h r e e p a r t i c l e s , the 

s a m e h o l d s . T h e r e f o r e to f i r s t a p p r o x i m a t i o n : 

E ^ = i-/^^''^''"^ . / /:-P0i2 dri d^V'^^^^(N-.) 
y N if 

f S , l ( ' / 2 ) N ( N - i ) 
(VI-48) 

F o r N — CD, V -> 00, s u c h t h a t N / V 

N - i 
2 

^ l o g Q | . J ) = l o g V - l o g N + 1 + l o g | l + - J - j 

= l o g V + 1 + ( 1 / 2 ) P P I . ( V I - 4 9 ) 

F o r t h e f r e e e n e r g y p e r p a r t i c l e , o n e f i n d s i n f i r s t a p p r o x i m a t i o n 

f ( ' ) = - k T | l + l o g V + ( 3 / 2 ) l o g i Z I ^ l J i L + ( l / 2 ) p ; 3 , | . ( V I - 5 0 ) 

T o f i n d t h e h i g h e r t e r m s i n t h e v i r i a l e x p a n s i o n , o n e a p p l i e s 
s u c c e s s i v e c o r r e c t i o n f a c t o r s , w h i c h t a k e a c c o u n t of t h e s t a t i s t i c a l 
c o r r e l a t i o n s b e t w e e n t h e ^ ' s t h a t w e r e n e g l e c t e d i n t h e f o r e g o i n g 
a p p r o x i m a t i o n . 

T h e f i r s t c o r r e c t i o n c o m e s f r o m t h r e e - p a r t i c l e c o r r e l a t i o n s . O n e 
m u s t t h e r e f o r e m u l t i p l y by 

»12V'l3»23 ^ V^12^13^23 

? ' l2? ' i3f23 f 3 ^ 

T h e r e a r e (3 ) t r i p l e t s ; h e n c e , t h i s f a c t o r m u s t b e r a i s e d t o t h e p o w e r ( ^ ) . 
T h e f i r s t c o r r e c t i o n f a c t o r i s t h e r e f o t e 

n + 3fi2 + 3f i \ +f i2f l3f23] 

1 1 + 3r,2 + 3ff2 + fL J 

( i / 6 ) N ( N - i ) ( N - 2 ) 



Now it i s e a s y to ve r i fy tha t fi2 « V '^ and fi2fi3f23 "̂  V " ^ T h u s , in 
( Q N ) ' ^ ' ^ . one h a s the c o r r e c t i o n f a c t o r 

(l/6)(N-l)(N-2) (1/3) p 
• ' \ -( l + i L 3 , 0 ( V - 3 ) ) 

T h e r e f o r e , in s e c o n d a p p r o x i m a t i o n : 

f(2) = - k T ( 1 + log V + (3 /2) log l U i B i S l + (1 /2) pf t + (1 /3) p^P2| -

(VI-51) 

In a s i m i l a r w a y , one can find the g e n e r a l t e r m , which is 

P m y^ 
T P • 

m + 1 '̂  

In t h i s w a y , we find for the p r e s s u r e the r e s u l t (VI-39) 

p = . | i = i i l | l - y i l l ^ p m l . (VI-52) 
f ^v V I Z-̂  m + 1 j 

D. V i r i a l E x p a n s i o n of the P a i r D i s t r i b u t i o n F u n c t i o n 

In a s i m i l a r way a s the f r ee e n e r g y , the m o l e c u l a r d i s t r i b u t i o n 
funct ions can be expanded in p o w e r s of the dens i ty . T h e s e s e r i e s w e r e 
f i r s t g iven by M a y e r and M o n t r o l l , and independent ly by de Boer and 
M i c h e l s . Van K a m p e n ' s m e t h o d can l i kewi se be app l ied to th i s c a s e 
C o m p a r e h i s p a p e r w h e r e he d e r i v e s the v i r i a l expans ion of log g(r . In 
the s u p p l e m e n t of F i s h e r ' s book (Ref- 1) the v i r i a l expans ion of log g(r) is 
d e r i v e d too . 

In the fol lowing, we sha l l u s e the t h e o r e m (IV-14) p r o v e d b e f o r e , 
tha t g ( r ) i s (1/2) p t i m e s the funct ional d e r i v a t i v e wi th r e s p e c t to the p a i r 
p o t e n t i a l of the f r e e e n e r g y p e r p a r t i c l e ; i . e . , 

6f = ( l / 2 ) p / 6 0 ( ? ) g ( ? ) d ? , ( V 1 - " ) 

We have found [cf. (VI-51)] 

f , , , 27TmkT ^ V "^ n m l (VI-54) 
f = -kT | l + log V + (3/2) log — j - ^ + 2 . T^TT-l P J • ^ ' 
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Hence 

00 r> 

hi = -kT y - ^ 6 ^ ^ = ( l / 2 ) p / 6 0 ( ? ) g ( ? ) d ? . (VI-55) 
' ^ m •+ 1 J 

Let us write 

g(r) = g(°) (r) + pg(') (r) + p^g(^) (r) + ... {VI-56) 

Equating the coefficients of p in (VI-55), we see that 

- i ^ 6 P i ^ - ^ 6 l i e J(e- '^*^^^ - 1 ) d r = ( l / 2 ) j 6 0 ( r ) g('') (r) d ? . 

g(o)(r) = e-P*(^). (VI-57) 

The coefficient of p^ is found as follows: 

{i/2)Jd<t>{T) g( ')(r) d ? = - i ^ 6/32 = - | ^ &Ji,zhiiu d?id?2dr3; 

A 0 ( r ) g ( ' ) ( r ) d r = i J60i2e"^*'^fi3f23dridT2dr 

Hence, 

where 

g(')(ri2) = e-^*('^-)Jfi3f23 d?3 = e-' '*('^-)g,(ri2), (VI-58) 

3 

gi(r,2) = rfi3f23d?"3 = r d ? 3 | / \ | . (VI-59) 

From 

/

/- 3 4 3 4 3 4 -\ 

dri...dr4 ] 3 l ^ + 6 ^ + ^ [ [ c f . (VI-5 
' - 1 2 1 2 1 2 
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we can c o m p u t e g^ ' {ri2): 

6 rfi2f24f34fi3d?i...d?-4 = " 4 ^ V j 6 0 i 2 e ' ^ ^ ' ^ <J'(r,2) d^ia, (VI-60) 

w h e r e 

^(ru) = Jfi3f24f34 dr3d?; = Jd?"3d?;{l iji {vi-61) 

6 fiizfnh^izih^ d?,. . .dr-4 = -4|3V r60( r i2) e"^*^'' '^^ y(ri2) dr ,2 

-i3V r 6 0 ( r i 2 ) e - ' ^ * < ' ^ ' ^ ^ ( g i ( r i 2 ) V d ? i 2 , 
J I- J (VI-62) 

w h e r e 

^ ( r i 2 

and 

6 

/fl3f23f24f34 d?3d?4 = / i^3dr4 { [ ^ } ; (VI-63) 

/f,2fl3fHf23f24f34d?-l...d?-4 = - ^ ^ V J 6 0 ( r i 2 ) e"^*' '^ '^ ' X{ri2) d?i2 ( v i . 6 4 ) 

w h e r e 

X ( r i 2 ) /fl3fl4f23f24f34 d?3d?4 = /d?-3d?4 { ^ ^ J ' ^ ^ ^ " " ^ 

T h e r e f o r e , if we w r i t e 

( r ) = e - ^ ^ ' ^ ' { l + P g l ( r ) + P ^ g 2 ( r ) + . - } . ^^ l"^^) 
g 

we have found 

3 

gl(r) = /fl3f23dr3 = > ? 3 { A } ' ^^^-'^' 
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and 

2(r) = <I,(r) + 2>i'(r) + ( l / 2 ) g^(r) + ( l / 2 ) X(r) (VI-68) 

n rq <> ^ 

One s e e s that to find the funct ions g i ( r ) , g2(r), e t c . we have to b r e a k the 
bonds in /32, ^ 3 , e t c . F r o m the e x a m p l e s above , it would not be diff icul t 
to find the g e n e r a l r u l e , i . e . , the coef f ic ien t s of the h i g h e r p o w e r s of p 
in (VI-66) . 

R e m a r k 

If we expand log g ( r ) , that i s , if we w r i t e 

00 

log g ( r ) = - P 0 ( r ) + Y P " 7 n ( r ) . 
1 

then one e a s i l y v e r i f i e s that 

(VI-69) 

î(r) = gi(r) = /d?'3{ A } 

a n d 
(VI-70) 

72( r ) = g2(r) - (1 /2) g^(r) = $ ( r ) + 2'F(r) + ( l / 2 ) X(r). 

E . C o m p u t a t i o n s and C h e c k s on A p p r o x i m a t e E x p r e s s i o n s for the P a i r 
D i s t r i b u t i o n F u n c t i o n 

F o r the s i m p l e c a s e of h a r d s p h e r e s , one can c o m p u t e the f i r s t 
few of the funct ions gjj(r) in (VI-66); 

g iUJ = / f l 3 f,3 d r . 

is v e r y s i m p l e ; it was f i r s t c a l c u l a t e d by Ki rkwood . One finds (if the 
d i a m e t e r of the s p h e r e s i s t aken to be 1) 

27r 
; i ( r ) = ^ [ 2 - (3 /2) r + ( I / 8 ) r^ ] , for r S 2; 

• for r a 2; 

3 

0, (VI-71) 

g2(r) for h a r d s p h e r e s h a s a l s o been c o m p u t e d [cf. N i jboe r and Van Hove , 
P h y s . Rev. _85, 777 (1952)]. In p a r t i c u l a r , X(r) i s r a t h e r diff icul t , but it 
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„_ J 4. 1- -t,i *„ o,rT-,rp=;s <£ T, and X in t e rms of elementary 
proved to be possible to express >*-, i , <»"" '̂  / 
functions. We will not give the resul ts he re . 

As soon as one knows g{r) toa certain order in p, the corresponding 
vir ial coefficients can be deduced from it in two alternative ways. 

a) We had[cf. {IV-10)] 

J^= p.ULpZ r g(r) r^ -I* dr , (VI-72) 
kT P 3kT <" I 5\ ' dr 

which we derived from the vir ia l theorem. Fur ther , 

kT 

From these 

- = P + Z B ^ P " - < ^ ^ " " ' 

B„. - i z r g(n-.) (.) .3 d ^ , _ - r ĝ _̂ (.) .3 dg) ,̂ . (,,.,,) 
J Q J 0 

For hard spheres , 

Bn = (2V3)gn-2(l)> ^^^""^ 

i.e., Bn is given by the value of gn-2 at the diameter of the sphere, 

b) F r o m the so-called compressibility integral [cf. (1-4)], 

1 . 4 . p / ( g ( r ) - l ) r M r . k T ( | ^ ) ^ - X x . ( - - ^ 6 ) 

For hard spheres , for example, this leads to 

/

OO 

g,(r) rMr (VI-77) 

, / ,. , of parhoar t ic le ) . Using our result for g2(r), we found 
' / ' 'l a : : : u T s from b the exact value I f B4 = 0.2869b3, as it was com-

A I \ L RoTtzmaTn If we had used some approximate expression for 
^ : S She t w i ' e t u u T T t a m e d from a and b would m general have been 
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different. It will be obvious that here we have a method to check approximate 

theories for g{r) (cf. the paper cited on p- 64). 

As an example, let us consider the Born-Green integral equation 

[cf. (IV-31)]: 

1 5logg ' ( r i2)_. . S 0 ( r i 2 ) _ p r^*illL)g'(ri3)g'(r23)d?-3. (VI-78) 

p a?i ari J ari 

We write g'(r) because it is an approximation to the exact g(r). Making 

the substitution, 

g'(r) = e-'^*('^^(r), 

we have 

3v(r,2) v(ri3) v(r23) e ^ ^ ^ ' 
•J ari 

^^(^-) - -Ppv(r,2) /v(ri3) v(r23) ^ ^ ,-/30(ri3)-/3 0(r23) , ^ ^ . ( ^ , . , , ) 

If now one makes the expansion 

v(r) = 1 + pg;(r) + p"gi(r) + . . . , 

introduces this in (Vl-79), and equates coefficients of equal powers of p, 

one finds 

/ ' 
g;(r) = jf(r i3) f(r23) d?-3 = g,(r) (Vl-80) 

[cf. (VI-67)]; i.e., gi(r) is exact and therefore B3 is also exact. 

Furthermore, 

g2(r) = (1/2) gf(r) +<l.(r) + 2>{'(r) + (l/2) X'(r), (VI-81) 

[cf. (VI-68)] where X' / X, so that g2 is given incorrectly. For hard 

spheres, one can again evaluate g2(r) and compare it with g2(r). When 

substituted into (Vl-74) and (VI-77), gj(r) leads to incorrect and incon­

sistent values of B4. One finds 

B' = 0.2252b^ 
4V ' 

and 

B;^ = 0.3424b\ (Vl-82) 
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w h e r e the i n d i c e s v and c s tand for v i r i a l and c o m p r e s s i b i l i t y , r e s p e c t i v e l y . 
T h i s c a l c u l a t i o n can be ex tended to g^(r) and B ' [cf. Ni jboer and F i e s c h i , 
P h y s i c a 19, 545 (1953)]. The r e s u l t i s 

B^y = 0.0475b*, 

B^c = 0.1335b*, 

and 

0.1103b*. {VI-83) 

The e x a c t va lue w a s found f r o m Monte C a r l o c o m p u t a t i o n s . S i m i l a r c a l ­
c u l a t i o n s have b e e n p e r f o r m e d for o the r a p p r o x i m a t e t h e o r i e s for g ( r ) , in 
p a r t i c u l a r for the s o - c a l l e d h y p e r n e t t e d chain a p p r o x i m a t i o n and the 
P e r c u s - Y e v i c k equat ion [cf. Refs . (1) and (7)]. 

The r e s u l t s a r e compi l ed in the following t ab le : 

Exact 
Born-Green 
Hypernetted chain 
Percus-Yevick 

(5/8)b^ 
(5/8)b^ 
(5/8)b^ 
{5/8)b^ 

B4. 

0.2869b' 
0.2252b' 
0.4453b' 
0.2500b' 

B4C 

0.2869b' 
0.3424b' 
0.2092b' 
0.2969b' 

0.1103b* 
0.0475b* 
0.1447b* 
0.0859b'' 

3 5 c 

0.1103b'' 
0.1335b* 
0.0493b* 
0.121b* 

One no t e s that a l l t h e s e a p p r o x i m a t e t h e o r i e s s t a r t to go wrong wi th 
g2(r) (or w i th B4). T h i s , howeve r , does not n e c e s s a r i l y m e a n that t h e s e 
a p p r o x i m a t i o n s a r e bad for l iquid d e n s i t i e s . In s u c c e s s i v e t e r m s in the 
v i r i a l expans ion , t h e r e m a y a l so be m a n y c o m p e n s a t i o n s . F o r a c o m p a r i s o n 
of exac t ( c o m p u t e r ca l cu l a t i ons ) and a p p r o x i m a t e r e s u l t s for high d e n s i t i e s , 
r e f e r to F i s h e r ' s book (p. 315 and following). 

Le t m e conclude by mak ing a few r e m a r k s only on the h y p e r n e t t e d 
cha in equa t ion and the P e r c u s - Y e v i c k equat ion. It i s p o s s i b l e to d e r i v e an 
e x a c t i n t e g r a l equa t ion for g ( r ) . It con t a in s , howeve r , an infinite s e r i e s . 
If a l l but the f i r s t t e r m in th i s s e r i e s a r e neg lec t ed , one o b t a m s the 
P e r c u s - Y e v i c k equa t ion . Analogous s i tua t ions hold for the h y p e r n e t t e d 
cha in and B o r n - G r e e n a p p r o x i m a t i o n s . The P e r c u s - Y e v i c k equat ion can 
a l s o be ob ta ined f rom a p a r t i a l s u m m a t i o n of g r a p h s that defme uM- Ir. 
the P e r c u s - Y e v i c k equa t ion , one s u m s only a s m a l l subse t of g r a p h s that 
a r e i nc luded in the h y p e r n e t t e d chain , but a p p a r e n t l y they s u m to a b e t t e r 
a p p r o x i m a t i o n (at l e a s t for h a r d s p h e r e s and for the L e n n a r d - J o n e s p o t e n ­
t i a l ) . The r e l e v a n t s u m m a t i o n is exac t in the o n e - d i m e n s i o n a l h a r d - s p h e r e 
c a s e . 
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